Suppr超能文献

不明原因发热成人中宏基因组下一代测序的临床应用评估。

Evaluations of Clinical Utilization of Metagenomic Next-Generation Sequencing in Adults With Fever of Unknown Origin.

机构信息

Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China.

BGI PathoGenesis Pharmaceutical Technology Co., Ltd., BGI-Shenzhen, Shenzhen, China.

出版信息

Front Cell Infect Microbiol. 2022 Jan 21;11:745156. doi: 10.3389/fcimb.2021.745156. eCollection 2021.

Abstract

INTRODUCTION

The diagnosis of infection-caused fever of unknown origin (FUO) is still challenging, making it difficult for physicians to provide an early effective therapy. Therefore, a novel pathogen detection platform is needed. Metagenomic next-generation sequencing (mNGS) provides an unbiased, comprehensive technique for the sequence-based identification of pathogenic microbes, but the study of the diagnostic values of mNGS in FUO is still limited.

METHODS

In a single-center retrospective cohort study, 175 FUO patients were enrolled, and clinical data were recorded and analyzed to compare mNGS with culture or traditional methods including as smears, serological tests, and nucleic acid amplification testing (NAAT) (traditional PCR, Xpert MTB/RIF, and Xpert MTB/RIF Ultra).

RESULTS

The blood mNGS could increase the overall rate of new organisms detected in infection-caused FUO by roughly 22.9% and 19.79% in comparison to culture (22/96 vs. 0/96; OR, ∞; p = 0.000) and conventional methods (19/96 vs. 3/96; OR, 6.333; p = 0.001), respectively. Bloodstream infection was among the largest group of those identified, and the blood mNGS could have a 38% improvement in the diagnosis rate compared to culture (19/50 vs. 0/50; OR, ∞; p = 0.000) and 32.0% compared to conventional methods (16/50 vs. 3/50; OR, 5.333; p = 0.004). Among the non-blood samples in infection-caused FUO, we observed that the overall diagnostic performance of mNGS in infectious disease was better than that of conventional methods by 20% (9/45 vs. 2/45; OR, 4.5; p = 0.065), and expectedly, the use of non-blood mNGS in non-bloodstream infection increased the diagnostic rate by 26.2% (8/32 vs. 0/32; OR, ∞; p = 0.008). According to 175 patients' clinical decision-making, we found that the use of blood mNGS as the first-line investigation could effectively increase 10.9% of diagnosis rate of FUO compared to culture, and the strategy that the mNGS of suspected parts as the second-line test could further benefit infectious patients, improving the diagnosis rate of concurrent infection by 66.7% and 12.5% in non-bloodstream infection, respectively.

CONCLUSION

The application of mNGS in the FUO had significantly higher diagnostic efficacy than culture or other conventional methods. In infection-caused FUO patients, application of blood mNGS as the first-line investigation and identification of samples from suspected infection sites as the second-line test could enhance the overall FUO diagnosis rate and serve as a promising optimized diagnostic protocol in the future.

摘要

简介

感染性不明原因发热(FUO)的诊断仍然具有挑战性,使得医生难以提供早期有效的治疗。因此,需要一种新的病原体检测平台。宏基因组下一代测序(mNGS)为基于序列的致病微生物的鉴定提供了一种无偏的、全面的技术,但 mNGS 在 FUO 中的诊断价值研究仍然有限。

方法

在一项单中心回顾性队列研究中,纳入了 175 例 FUO 患者,记录并分析了临床数据,以比较 mNGS 与培养或包括涂片、血清学检测和核酸扩增检测(传统 PCR、Xpert MTB/RIF 和 Xpert MTB/RIF Ultra)在内的传统方法的诊断价值。

结果

血液 mNGS 可将感染性 FUO 中新发现的病原体总体检出率分别提高约 22.9%和 19.79%,与培养相比(22/96 与 0/96;OR,∞;p = 0.000),与传统方法相比(19/96 与 3/96;OR,6.333;p = 0.001)。血流感染是最大的感染组之一,血液 mNGS 可将其诊断率提高 38%,与培养相比(19/50 与 0/50;OR,∞;p = 0.000),与传统方法相比(16/50 与 3/50;OR,5.333;p = 0.004)。在感染性 FUO 的非血样本中,我们观察到 mNGS 在感染性疾病中的整体诊断性能比传统方法提高了 20%(9/45 与 2/45;OR,4.5;p = 0.065),而且,在非血流感染中使用非血 mNGS 可将诊断率提高 26.2%(8/32 与 0/32;OR,∞;p = 0.008)。根据 175 名患者的临床决策,我们发现与培养相比,血液 mNGS 作为一线检查可有效提高 FUO 的诊断率 10.9%,而将疑似部位的 mNGS 作为二线检查的策略可使感染患者进一步受益,将非血流感染的并发感染诊断率提高 66.7%和 12.5%。

结论

mNGS 在 FUO 中的应用具有明显高于培养或其他传统方法的诊断效果。在感染性 FUO 患者中,将血液 mNGS 作为一线检查,识别疑似感染部位的样本作为二线检查,可以提高整体 FUO 诊断率,并有望成为未来有前途的优化诊断方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7aba/8813867/534d4eafd686/fcimb-11-745156-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验