IEEE Trans Med Imaging. 2022 Jul;41(7):1791-1801. doi: 10.1109/TMI.2022.3149281. Epub 2022 Jun 30.
Detecting 3D landmarks on cone-beam computed tomography (CBCT) is crucial to assessing and quantifying the anatomical abnormalities in 3D cephalometric analysis. However, the current methods are time-consuming and suffer from large biases in landmark localization, leading to unreliable diagnosis results. In this work, we propose a novel Structure-Aware Long Short-Term Memory framework (SA-LSTM) for efficient and accurate 3D landmark detection. To reduce the computational burden, SA-LSTM is designed in two stages. It first locates the coarse landmarks via heatmap regression on a down-sampled CBCT volume and then progressively refines landmarks by attentive offset regression using multi-resolution cropped patches. To boost accuracy, SA-LSTM captures global-local dependence among the cropping patches via self-attention. Specifically, a novel graph attention module implicitly encodes the landmark's global structure to rationalize the predicted position. Moreover, a novel attention-gated module recursively filters irrelevant local features and maintains high-confident local predictions for aggregating the final result. Experiments conducted on an in-house dataset and a public dataset show that our method outperforms state-of-the-art methods, achieving 1.64 mm and 2.37 mm average errors, respectively. Furthermore, our method is very efficient, taking only 0.5 seconds for inferring the whole CBCT volume of resolution 768×768×576 .
在锥形束计算机断层扫描 (CBCT) 上检测 3D 地标对于评估和量化 3D 头影测量分析中的解剖学异常至关重要。然而,目前的方法既耗时又容易导致地标定位出现较大偏差,从而导致不可靠的诊断结果。在这项工作中,我们提出了一种新颖的基于结构感知长短期记忆 (SA-LSTM) 的高效准确的 3D 地标检测方法。为了降低计算负担,SA-LSTM 分为两个阶段设计。它首先通过在降采样的 CBCT 体上进行热图回归来定位粗略地标,然后通过使用多分辨率裁剪补丁的注意力偏移回归来逐步细化地标。为了提高准确性,SA-LSTM 通过自注意力来捕获裁剪补丁之间的全局-局部依赖关系。具体来说,一种新颖的图注意力模块通过隐式编码地标全局结构来合理化预测位置。此外,一种新颖的注意力门控模块递归地过滤不相关的局部特征,并保持高置信度的局部预测,以聚合最终结果。在内部数据集和公共数据集上进行的实验表明,我们的方法优于最先进的方法,分别实现了 1.64 毫米和 2.37 毫米的平均误差。此外,我们的方法非常高效,仅需 0.5 秒即可推断出分辨率为 768×768×576 的整个 CBCT 体。