Suppr超能文献

深度学习算法自动生成 3D 头影测量标志点的准确性:系统评价和荟萃分析。

Accuracy of automated 3D cephalometric landmarks by deep learning algorithms: systematic review and meta-analysis.

机构信息

Department of Biomedical Sciences for Health, University of Milan, Via Mangiagalli 31, 20133, Milan, Italy.

Department of Electronics, Information and Bioengineering, Politecnico Di Milano, Via Ponzio 34/5, 20133, Milan, Italy.

出版信息

Radiol Med. 2023 May;128(5):544-555. doi: 10.1007/s11547-023-01629-2. Epub 2023 Apr 24.

Abstract

OBJECTIVES

The aim of the present systematic review and meta-analysis is to assess the accuracy of automated landmarking using deep learning in comparison with manual tracing for cephalometric analysis of 3D medical images.

METHODS

PubMed/Medline, IEEE Xplore, Scopus and ArXiv electronic databases were searched. Selection criteria were: ex vivo and in vivo volumetric data images suitable for 3D landmarking (Problem), a minimum of five automated landmarking performed by deep learning method (Intervention), manual landmarking (Comparison), and mean accuracy, in mm, between manual and automated landmarking (Outcome). QUADAS-2 was adapted for quality analysis. Meta-analysis was performed on studies that reported as outcome mean values and standard deviation of the difference (error) between manual and automated landmarking. Linear regression plots were used to analyze correlations between mean accuracy and year of publication.

RESULTS

The initial electronic screening yielded 252 papers published between 2020 and 2022. A total of 15 studies were included for the qualitative synthesis, whereas 11 studies were used for the meta-analysis. Overall random effect model revealed a mean value of 2.44 mm, with a high heterogeneity (I = 98.13%, τ = 1.018, p-value < 0.001); risk of bias was high due to the presence of issues for several domains per study. Meta-regression indicated a significant relation between mean error and year of publication (p value = 0.012).

CONCLUSION

Deep learning algorithms showed an excellent accuracy for automated 3D cephalometric landmarking. In the last two years promising algorithms have been developed and improvements in landmarks annotation accuracy have been done.

摘要

目的

本系统评价和荟萃分析的目的是评估深度学习自动定位与手动追踪在 3D 医学图像头影测量分析中的准确性。

方法

检索 PubMed/Medline、IEEE Xplore、Scopus 和 ArXiv 电子数据库。选择标准为:适合 3D 定位的离体和体内容积数据图像(问题)、至少有 5 个深度学习方法进行的自动定位(干预)、手动定位(比较)以及手动和自动定位之间的平均准确性,以毫米为单位(结果)。QUADAS-2 被改编用于质量分析。荟萃分析针对报告手动和自动定位之间的平均值和标准差差异(误差)作为结果的研究进行。线性回归图用于分析平均准确性与发表年份之间的相关性。

结果

最初的电子筛选产生了 2020 年至 2022 年期间发表的 252 篇论文。共有 15 项研究进行了定性综合,而 11 项研究进行了荟萃分析。总体随机效应模型显示平均值为 2.44 毫米,具有高度异质性(I=98.13%,τ=1.018,p 值<0.001);由于每个研究都存在多个领域的问题,因此存在很高的偏倚风险。元回归表明平均误差与发表年份之间存在显著关系(p 值=0.012)。

结论

深度学习算法在自动 3D 头影测量定位方面表现出优异的准确性。在过去的两年中,已经开发了有前途的算法,并提高了地标注释的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ce5/10181977/c63ad4e65811/11547_2023_1629_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验