Suppr超能文献

基于 3D 掩模 R-CNN 和局部依赖学习的颅颌面标志点在 CBCT 图像上的定位。

Localization of Craniomaxillofacial Landmarks on CBCT Images Using 3D Mask R-CNN and Local Dependency Learning.

出版信息

IEEE Trans Med Imaging. 2022 Oct;41(10):2856-2866. doi: 10.1109/TMI.2022.3174513. Epub 2022 Sep 30.

Abstract

Cephalometric analysis relies on accurate detection of craniomaxillofacial (CMF) landmarks from cone-beam computed tomography (CBCT) images. However, due to the complexity of CMF bony structures, it is difficult to localize landmarks efficiently and accurately. In this paper, we propose a deep learning framework to tackle this challenge by jointly digitalizing 105 CMF landmarks on CBCT images. By explicitly learning the local geometrical relationships between the landmarks, our approach extends Mask R-CNN for end-to-end prediction of landmark locations. Specifically, we first apply a detection network on a down-sampled 3D image to leverage global contextual information to predict the approximate locations of the landmarks. We subsequently leverage local information provided by higher-resolution image patches to refine the landmark locations. On patients with varying non-syndromic jaw deformities, our method achieves an average detection accuracy of 1.38± 0.95mm, outperforming a related state-of-the-art method.

摘要

头影测量分析依赖于从锥形束 CT(CBCT)图像中准确检测颅面(CMF)标志点。然而,由于 CMF 骨骼结构的复杂性,很难有效地、准确地定位标志点。在本文中,我们提出了一个深度学习框架,通过联合数字化 CBCT 图像上的 105 个 CMF 标志点来解决这个挑战。通过明确学习标志点之间的局部几何关系,我们的方法扩展了 Mask R-CNN,用于地标位置的端到端预测。具体来说,我们首先在降采样的 3D 图像上应用检测网络,利用全局上下文信息来预测标志点的大致位置。然后,我们利用来自更高分辨率图像补丁的局部信息来细化地标位置。在患有不同的非综合征性颌骨畸形的患者中,我们的方法实现了平均 1.38±0.95mm 的检测精度,优于相关的最先进方法。

相似文献

2
Fast and Accurate Craniomaxillofacial Landmark Detection via 3D Faster R-CNN.基于 3D Faster R-CNN 的快速精确颅颌面标志点检测
IEEE Trans Med Imaging. 2021 Dec;40(12):3867-3878. doi: 10.1109/TMI.2021.3099509. Epub 2021 Nov 30.
8
Computer-aided cephalometric landmark annotation for CBCT data.基于计算机的 CBCT 数据头影测量标志点自动标注。
Int J Comput Assist Radiol Surg. 2017 Jan;12(1):113-121. doi: 10.1007/s11548-016-1453-9. Epub 2016 Jun 29.

引用本文的文献

本文引用的文献

3
Deep Geodesic Learning for Segmentation and Anatomical Landmarking.深度学习在分割和解剖标志中的应用。
IEEE Trans Med Imaging. 2019 Apr;38(4):919-931. doi: 10.1109/TMI.2018.2875814. Epub 2018 Oct 12.
5
Learning-Based Multimodal Image Registration for Prostate Cancer Radiation Therapy.基于学习的前列腺癌放射治疗多模态图像配准
Med Image Comput Comput Assist Interv. 2016 Oct;9902:1-9. doi: 10.1007/978-3-319-46726-9_1. Epub 2016 Oct 2.
8
Fully automated quantitative cephalometry using convolutional neural networks.使用卷积神经网络的全自动定量头影测量法。
J Med Imaging (Bellingham). 2017 Jan;4(1):014501. doi: 10.1117/1.JMI.4.1.014501. Epub 2017 Jan 6.
9
A benchmark for comparison of dental radiography analysis algorithms.一种用于比较牙科放射摄影分析算法的基准。
Med Image Anal. 2016 Jul;31:63-76. doi: 10.1016/j.media.2016.02.004. Epub 2016 Feb 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验