文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于 3D 掩模 R-CNN 和局部依赖学习的颅颌面标志点在 CBCT 图像上的定位。

Localization of Craniomaxillofacial Landmarks on CBCT Images Using 3D Mask R-CNN and Local Dependency Learning.

出版信息

IEEE Trans Med Imaging. 2022 Oct;41(10):2856-2866. doi: 10.1109/TMI.2022.3174513. Epub 2022 Sep 30.


DOI:10.1109/TMI.2022.3174513
PMID:35544487
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9673501/
Abstract

Cephalometric analysis relies on accurate detection of craniomaxillofacial (CMF) landmarks from cone-beam computed tomography (CBCT) images. However, due to the complexity of CMF bony structures, it is difficult to localize landmarks efficiently and accurately. In this paper, we propose a deep learning framework to tackle this challenge by jointly digitalizing 105 CMF landmarks on CBCT images. By explicitly learning the local geometrical relationships between the landmarks, our approach extends Mask R-CNN for end-to-end prediction of landmark locations. Specifically, we first apply a detection network on a down-sampled 3D image to leverage global contextual information to predict the approximate locations of the landmarks. We subsequently leverage local information provided by higher-resolution image patches to refine the landmark locations. On patients with varying non-syndromic jaw deformities, our method achieves an average detection accuracy of 1.38± 0.95mm, outperforming a related state-of-the-art method.

摘要

头影测量分析依赖于从锥形束 CT(CBCT)图像中准确检测颅面(CMF)标志点。然而,由于 CMF 骨骼结构的复杂性,很难有效地、准确地定位标志点。在本文中,我们提出了一个深度学习框架,通过联合数字化 CBCT 图像上的 105 个 CMF 标志点来解决这个挑战。通过明确学习标志点之间的局部几何关系,我们的方法扩展了 Mask R-CNN,用于地标位置的端到端预测。具体来说,我们首先在降采样的 3D 图像上应用检测网络,利用全局上下文信息来预测标志点的大致位置。然后,我们利用来自更高分辨率图像补丁的局部信息来细化地标位置。在患有不同的非综合征性颌骨畸形的患者中,我们的方法实现了平均 1.38±0.95mm 的检测精度,优于相关的最先进方法。

相似文献

[1]
Localization of Craniomaxillofacial Landmarks on CBCT Images Using 3D Mask R-CNN and Local Dependency Learning.

IEEE Trans Med Imaging. 2022-10

[2]
Fast and Accurate Craniomaxillofacial Landmark Detection via 3D Faster R-CNN.

IEEE Trans Med Imaging. 2021-12

[3]
CMF-Net: craniomaxillofacial landmark localization on CBCT images using geometric constraint and transformer.

Phys Med Biol. 2023-4-26

[4]
Context-guided fully convolutional networks for joint craniomaxillofacial bone segmentation and landmark digitization.

Med Image Anal. 2020-2

[5]
A knowledge-based algorithm for automatic detection of cephalometric landmarks on CBCT images.

Int J Comput Assist Radiol Surg. 2015-11

[6]
Automatic Craniomaxillofacial Landmark Digitization via Segmentation-Guided Partially-Joint Regression Forest Model and Multiscale Statistical Features.

IEEE Trans Biomed Eng. 2016-9

[7]
Automatic Localization of Landmarks in Craniomaxillofacial CBCT Images Using a Local Attention-Based Graph Convolution Network.

Med Image Comput Comput Assist Interv. 2020-10

[8]
Computer-aided cephalometric landmark annotation for CBCT data.

Int J Comput Assist Radiol Surg. 2016-6-29

[9]
Newly defined landmarks for a three-dimensionally based cephalometric analysis: a retrospective cone-beam computed tomography scan review.

Angle Orthod. 2015-1

[10]
Automated analysis of three-dimensional CBCT images taken in natural head position that combines facial profile processing and multiple deep-learning models.

Comput Methods Programs Biomed. 2022-11

引用本文的文献

[1]
Explainable deep learning for age and gender estimation in dental CBCT scans using attention mechanisms and multi task learning.

Sci Rep. 2025-5-24

[2]
Automatic identification of hard and soft tissue landmarks in cone-beam computed tomography via deep learning with diversity datasets: a methodological study.

BMC Oral Health. 2025-4-8

[3]
Autonomous surgical planning of mandibular angle reduction based on anatomical landmarks and osteotomy plane detection.

Sci Rep. 2025-2-18

[4]
Application of deep learning in wound size measurement using fingernail as the reference.

BMC Med Inform Decis Mak. 2024-12-18

[5]
CBCT analysis of mandibular position and bilateral symmetry in adult female patients with a deep overbite before and after flat bite plate treatment: a retrospective study.

Eur J Med Res. 2024-11-16

[6]
Craniomaxillofacial landmarks detection in CT scans with limited labeled data via semi-supervised learning.

Heliyon. 2024-7-16

[7]
Deep learning for 3D cephalometric landmarking with heterogeneous multi-center CBCT dataset.

PLoS One. 2024

[8]
Can artificial intelligence-driven cephalometric analysis replace manual tracing? A systematic review and meta-analysis.

Eur J Orthod. 2024-8-1

[9]
A Proof of Concept: Optimized Jawbone-Reduction Model for Mandibular Fracture Surgery.

J Imaging Inform Med. 2024-6

[10]
Automatic craniomaxillofacial landmarks detection in CT images of individuals with dentomaxillofacial deformities by a two-stage deep learning model.

BMC Oral Health. 2023-11-17

本文引用的文献

[1]
Integrating spatial configuration into heatmap regression based CNNs for landmark localization.

Med Image Anal. 2019-3-25

[2]
Efficient Multiple Organ Localization in CT Image using 3D Region Proposal Network.

IEEE Trans Med Imaging. 2019-1-24

[3]
Deep Geodesic Learning for Segmentation and Anatomical Landmarking.

IEEE Trans Med Imaging. 2018-10-12

[4]
Joint Craniomaxillofacial Bone Segmentation and Landmark Digitization by Context-Guided Fully Convolutional Networks.

Med Image Comput Comput Assist Interv. 2017-9

[5]
Learning-Based Multimodal Image Registration for Prostate Cancer Radiation Therapy.

Med Image Comput Comput Assist Interv. 2016-10

[6]
Detecting Anatomical Landmarks From Limited Medical Imaging Data Using Two-Stage Task-Oriented Deep Neural Networks.

IEEE Trans Image Process. 2017-6-28

[7]
Design, development and clinical validation of computer-aided surgical simulation system for streamlined orthognathic surgical planning.

Int J Comput Assist Radiol Surg. 2017-4-21

[8]
Fully automated quantitative cephalometry using convolutional neural networks.

J Med Imaging (Bellingham). 2017-1

[9]
A benchmark for comparison of dental radiography analysis algorithms.

Med Image Anal. 2016-2-28

[10]
Robust and Accurate Shape Model Matching Using Random Forest Regression-Voting.

IEEE Trans Pattern Anal Mach Intell. 2015-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索