University of Virginia, Department of Biomedical Engineering, Charlottesville, Virginia, United States of America.
PLoS Comput Biol. 2022 Feb 7;18(2):e1009341. doi: 10.1371/journal.pcbi.1009341. eCollection 2022 Feb.
Genome-scale metabolic network reconstructions (GENREs) are valuable tools for understanding microbial metabolism. The process of automatically generating GENREs includes identifying metabolic reactions supported by sufficient genomic evidence to generate a draft metabolic network. The draft GENRE is then gapfilled with additional reactions in order to recapitulate specific growth phenotypes as indicated with associated experimental data. Previous methods have implemented absolute mapping thresholds for the reactions automatically included in draft GENREs; however, there is growing evidence that integrating annotation evidence in a continuous form can improve model accuracy. There is a need for flexibility in the structure of GENREs to better account for uncertainty in biological data, unknown regulatory mechanisms, and context-specificity associated with data inputs. To address this issue, we present a novel method that provides a framework for quantifying combined genomic, biochemical, and phenotypic evidence for each biochemical reaction during automated GENRE construction. Our method, Constraint-based Analysis Yielding reaction Usage across metabolic Networks (CANYUNs), generates accurate GENREs with a quantitative metric for the cumulative evidence for each reaction included in the network. The structuring of CANYUNs allows for the simultaneous integration of three data inputs while maintaining all supporting evidence for biochemical reactions that may be active in an organism. CANYUNs is designed to maximize the utility of experimental and annotation datasets and to ultimately assist in the curation of the reference datasets used for the automatic construction of metabolic networks. We validated CANYUNs by generating an E. coli K-12 model and compared it to the manually curated reconstruction iML1515. Finally, we demonstrated the use of CANYUNs to build a model by generating an E. coli Nissle CANYUNs model using novel phenotypic data that we collected. This method may address key challenges for the procedural construction of metabolic networks by leveraging uncertainty and redundancy in biological data.
基因组规模代谢网络重建 (GENRE) 是理解微生物代谢的有价值的工具。自动生成 GENRE 的过程包括确定有足够基因组证据支持的代谢反应,以生成草稿代谢网络。然后,通过添加其他反应来填补草稿 GENRE,以再现与相关实验数据指示的特定生长表型。以前的方法已经为自动包含在草稿 GENRE 中的反应实施了绝对映射阈值;然而,越来越多的证据表明,以连续形式整合注释证据可以提高模型的准确性。需要 GENRE 的结构具有灵活性,以便更好地解释生物数据中的不确定性、未知的调节机制以及与数据输入相关的特定于上下文的情况。为了解决这个问题,我们提出了一种新的方法,该方法提供了一个框架,用于在自动 GENRE 构建过程中对每个生化反应的综合基因组、生化和表型证据进行量化。我们的方法,基于约束的分析产生代谢网络中反应使用的方法 (CANYUNs),通过网络中包含的每个反应的累积证据的定量指标生成准确的 GENRE。CANYUNs 的结构允许同时整合三个数据输入,同时保持可能在生物体中活跃的生化反应的所有支持证据。CANYUNs 旨在最大限度地利用实验和注释数据集,并最终有助于代谢网络自动构建中使用的参考数据集的策展。我们通过生成大肠杆菌 K-12 模型并将其与手动策展的 iML1515 重建进行比较来验证 CANYUNs。最后,我们通过使用我们收集的新表型数据生成大肠杆菌 Nissle CANYUNs 模型来演示了 CANYUNs 的使用。该方法可以通过利用生物数据中的不确定性和冗余来解决代谢网络程序性构建的关键挑战。