Khan Saba, Hussain Tanveer, Singh Chandra Veer, Tit Nacir
Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario M5S 3E4, Canada.
School of Science and Technology, University of New England Armidale, New South Wales 2351, Australia.
Langmuir. 2025 Aug 26;41(33):22455-22470. doi: 10.1021/acs.langmuir.5c02852. Epub 2025 Aug 12.
Timely detection of liver cirrhosis (LC) is critical for effective clinical management and improved patient outcomes. Among emerging diagnostic approaches, detection of volatile organic compounds (VOCs), related to LC, offers a noninvasive, rapid, and cost-effective alternative to conventional methods. In this work, we employed spin-polarized density functional theory (DFT) to systematically investigate the interaction of LC-related VOCs using transition-metal dichalcogenides (TMDs), specifically WX monolayers (X = S, Se). Five VOCs, namely, 2-pentanone, dimethyl sulfide (DMS), isoprene, limonene, and methanol, were selected based on their experimental association with LC. To enhance the sensitivity and selectivity of TMDs, Mn and Fe atoms were used to dope the chalcogen sites of WX, inducing strong dipole moments and improved van der Waals (vdW) interactions. The doped systems demonstrated significantly higher adsorption energies (, 1.5-2.1 eV), charge transfer (Δ = 0.4-0.8 e), and magnetization changes (Δ ≠ 0) for VOCs compared to air molecules ( < 0.5 eV, Δ < 0.1 e, Δ = 0), confirming strong selectivity. Work function shifts Δϕ > 0.4 eV (for VOCs) and changes in the density of states near the Fermi level further support enhanced electronic response upon VOC adsorption. Our study offers atomic-scale insights into adsorption energetics, charge transfer, and electronic structure modulation that can guide future experimental efforts in nanobiosensor development. We also critically examine the scope and limitations of our theoretical framework, emphasizing the need for experimental validation to translate these findings into practical diagnostic technologies.
及时检测肝硬化(LC)对于有效的临床管理和改善患者预后至关重要。在新兴的诊断方法中,检测与LC相关的挥发性有机化合物(VOCs)为传统方法提供了一种非侵入性、快速且经济高效的替代方案。在这项工作中,我们采用自旋极化密度泛函理论(DFT)系统地研究了与LC相关的VOCs与过渡金属二硫属化物(TMDs),特别是WX单层(X = S,Se)之间的相互作用。基于它们与LC的实验关联,选择了五种VOCs,即2-戊酮、二甲基硫醚(DMS)、异戊二烯、柠檬烯和甲醇。为了提高TMDs的灵敏度和选择性,使用Mn和Fe原子对WX的硫属元素位点进行掺杂,诱导出强偶极矩并改善范德华(vdW)相互作用。与空气分子相比(< 0.5 eV,Δ < 0.1 e,Δ = 0),掺杂体系对VOCs表现出显著更高的吸附能(,1.5 - 2.1 eV)、电荷转移(Δ = 0.4 - 0.8 e)和磁化变化(Δ ≠ 0),证实了强选择性。功函数偏移Δϕ > 0.4 eV(对于VOCs)以及费米能级附近态密度的变化进一步支持了VOC吸附时增强的电子响应。我们的研究提供了关于吸附能、电荷转移和电子结构调制的原子尺度见解,可指导未来纳米生物传感器开发的实验工作。我们还严格审视了我们理论框架的范围和局限性,强调需要进行实验验证以将这些发现转化为实际诊断技术。