Suppr超能文献

一种预测颈椎前路椎间盘切除融合术后非计划插管的人工智能方法。

An Artificial Intelligence Approach to Predicting Unplanned Intubation Following Anterior Cervical Discectomy and Fusion.

作者信息

Veeramani Ashwin, Zhang Andrew S, Blackburn Amy Z, Etzel Christine M, DiSilvestro Kevin J, McDonald Christopher L, Daniels Alan H

机构信息

Department of Orthopedic Surgery, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA.

出版信息

Global Spine J. 2023 Sep;13(7):1849-1855. doi: 10.1177/21925682211053593. Epub 2022 Feb 8.

Abstract

STUDY DESIGN

Level III retrospective database study.

OBJECTIVES

The purpose of this study is to determine if machine learning algorithms are effective in predicting unplanned intubation following anterior cervical discectomy and fusion (ACDF).

METHODS

The National Surgical Quality Initiative Program (NSQIP) was queried to select patients who had undergone ACDF. Machine learning analysis was conducted in Python and multivariate regression analysis was conducted in R. C-Statistics area under the curve (AUC) and prediction accuracy were used to measure the classifier's effectiveness in distinguishing cases.

RESULTS

In total, 54 502 patients met the study criteria. Of these patients, .51% underwent an unplanned re-intubation. Machine learning algorithms accurately classified between 72%-100% of the test cases with AUC values of between .52-.77. Multivariable regression indicated that the number of levels fused, male sex, COPD, American Society of Anesthesiologists (ASA) > 2, increased operating time, Age > 65, pre-operative weight loss, dialysis, and disseminated cancer were associated with increased risk of unplanned intubation.

CONCLUSIONS

The models presented here achieved high accuracy in predicting risk factors for re-intubation following ACDF surgery. Machine learning analysis may be useful in identifying patients who are at a higher risk of unplanned post-operative re-intubation and their treatment plans can be modified to prophylactically prevent respiratory compromise and consequently unplanned re-intubation.

摘要

研究设计

III级回顾性数据库研究。

目的

本研究旨在确定机器学习算法在预测颈椎前路椎间盘切除融合术(ACDF)后意外插管方面是否有效。

方法

查询国家外科质量改进计划(NSQIP)以选择接受过ACDF手术的患者。在Python中进行机器学习分析,在R中进行多变量回归分析。使用曲线下C统计面积(AUC)和预测准确性来衡量分类器区分病例的有效性。

结果

共有54502名患者符合研究标准。在这些患者中,0.51%接受了意外再次插管。机器学习算法准确分类了72%-100%的测试病例,AUC值在0.52-0.77之间。多变量回归表明,融合节段数、男性、慢性阻塞性肺疾病(COPD)、美国麻醉医师协会(ASA)分级>2、手术时间延长、年龄>65岁、术前体重减轻、透析和播散性癌症与意外插管风险增加相关。

结论

本文提出的模型在预测ACDF手术后再次插管的风险因素方面具有较高的准确性。机器学习分析可能有助于识别术后意外再次插管风险较高的患者,并且可以修改他们的治疗计划以预防性地防止呼吸功能不全,从而避免意外再次插管。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed8a/10556901/5f5951e5e864/10.1177_21925682211053593-fig1.jpg

相似文献

1
An Artificial Intelligence Approach to Predicting Unplanned Intubation Following Anterior Cervical Discectomy and Fusion.
Global Spine J. 2023 Sep;13(7):1849-1855. doi: 10.1177/21925682211053593. Epub 2022 Feb 8.
2
Feasibility of Machine Learning in the Prediction of Short-Term Outcomes Following Anterior Cervical Discectomy and Fusion.
World Neurosurg. 2022 Dec;168:e223-e232. doi: 10.1016/j.wneu.2022.09.090. Epub 2022 Sep 26.
5
8
Relationship Between ASA Scores and 30-Day Readmissions in Patients Undergoing Anterior Cervical Discectomy and Fusion.
Spine (Phila Pa 1976). 2017 Jan 15;42(2):85-91. doi: 10.1097/BRS.0000000000001680.
10
Are outpatient three- and four-level anterior cervical discectomies and fusion safe?
Spine J. 2021 Feb;21(2):231-238. doi: 10.1016/j.spinee.2020.10.007. Epub 2020 Oct 10.

引用本文的文献

本文引用的文献

2
Comparing different supervised machine learning algorithms for disease prediction.
BMC Med Inform Decis Mak. 2019 Dec 21;19(1):281. doi: 10.1186/s12911-019-1004-8.
3
A Novel Machine Learning Model Developed to Assist in Patient Selection for Outpatient Total Shoulder Arthroplasty.
J Am Acad Orthop Surg. 2020 Jul 1;28(13):e580-e585. doi: 10.5435/JAAOS-D-19-00395.
4
Predictive modeling in spine surgery.
Ann Transl Med. 2019 Sep;7(Suppl 5):S173. doi: 10.21037/atm.2019.07.99.
5
Risk factors for reintubation after anterior cervical discectomy and fusion surgery: evaluation of three observational data sets.
Can J Anaesth. 2020 Jan;67(1):42-56. doi: 10.1007/s12630-019-01492-8. Epub 2019 Sep 30.
6
Artificial intelligence and machine learning in spine research.
JOR Spine. 2019 Mar 5;2(1):e1044. doi: 10.1002/jsp2.1044. eCollection 2019 Mar.
7
The potential for artificial intelligence in healthcare.
Future Healthc J. 2019 Jun;6(2):94-98. doi: 10.7861/futurehosp.6-2-94.
8
Predictive analytics with gradient boosting in clinical medicine.
Ann Transl Med. 2019 Apr;7(7):152. doi: 10.21037/atm.2019.03.29.
9
Postoperative Complications Following Orthopedic Spine Surgery: Is There a Difference Between Men and Women?
Int J Spine Surg. 2019 Apr 30;13(2):125-131. doi: 10.14444/6017. eCollection 2019 Apr.
10
Machine learning in medicine: a practical introduction.
BMC Med Res Methodol. 2019 Mar 19;19(1):64. doi: 10.1186/s12874-019-0681-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验