Suppr超能文献

一种新的机器学习模型,旨在帮助选择门诊全肩关节置换术患者。

A Novel Machine Learning Model Developed to Assist in Patient Selection for Outpatient Total Shoulder Arthroplasty.

机构信息

From the Warren Alpert Medical School of Brown University (Biron, Sinha, Dr. Kleiner, and Aluthge), Center for Biomedical Informatics (Biron, Sinha, Aluthge, and Dr. Sarkar), Brown University, and Department of Orthopaedic Surgery (Dr. Goodman, Dr. Cohen, and Dr. Daniels), The Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI.

出版信息

J Am Acad Orthop Surg. 2020 Jul 1;28(13):e580-e585. doi: 10.5435/JAAOS-D-19-00395.

Abstract

INTRODUCTION

Patient selection for outpatient total shoulder arthroplasty (TSA) is important to optimizing patient outcomes. This study aims to develop a machine learning tool that may aid in patient selection for outpatient total should arthroplasty based on medical comorbidities and demographic factors.

METHODS

Patients undergoing elective TSA from 2011 to 2016 in the American College of Surgeons National Surgical Quality Improvement Program were queried. A random forest machine learning model was used to predict which patients had a length of stay of 1 day or less (short stay). A multivariable logistic regression was then used to identify which variables were significantly correlated with a short or long stay.

RESULTS

From 2011 to 2016, 4,500 patients were identified as having undergone elective TSA and having the necessary predictive features and outcomes recorded. The machine learning model was able to successfully identify short stay patients, producing an area under the receiver operator curve of 0.77. The multivariate logistic regression identified numerous variables associated with a short stay including age less than 70 years and male sex as well as variables associated with a longer stay including diabetes, chronic obstructive pulmonary disease, and American Society of Anesthesiologists class greater than 2.

CONCLUSIONS

Machine learning may be used to predict which patients are suitable candidates for short stay or outpatient TSA based on their medical comorbidities and demographic profile.

摘要

简介

门诊全肩关节置换术(TSA)的患者选择对于优化患者预后非常重要。本研究旨在开发一种机器学习工具,该工具可能有助于根据医疗合并症和人口统计学因素选择门诊全肩置换术的患者。

方法

在美国外科医师学会国家手术质量改进计划中,对 2011 年至 2016 年接受择期 TSA 的患者进行了查询。使用随机森林机器学习模型来预测哪些患者的住院时间为 1 天或更短(短时间住院)。然后,使用多变量逻辑回归来确定哪些变量与短时间或长时间住院显著相关。

结果

2011 年至 2016 年,确定了 4500 名患者接受了择期 TSA 手术,且记录了必要的预测特征和结果。机器学习模型能够成功识别出短期住院患者,其受试者工作特征曲线下面积为 0.77。多变量逻辑回归确定了许多与短期住院相关的变量,包括年龄小于 70 岁和男性,以及与较长住院时间相关的变量,包括糖尿病、慢性阻塞性肺疾病和美国麻醉医师协会分类大于 2 级。

结论

机器学习可用于根据患者的医疗合并症和人口统计学特征预测哪些患者适合短期住院或门诊 TSA。

相似文献

6
Predicting successful outpatient total shoulder arthroplasty.预测门诊全肩关节置换术的成功。
J Shoulder Elbow Surg. 2023 Jul;32(7):1357-1363. doi: 10.1016/j.jse.2023.02.131. Epub 2023 Mar 29.

引用本文的文献

2
Artificial intelligence in shoulder arthroplasty: how smart is it?肩关节置换术中的人工智能:它有多智能?
JSES Int. 2024 Jul 20;9(3):988-993. doi: 10.1016/j.jseint.2024.07.002. eCollection 2025 May.
4
Navigating the future: A comprehensive review of technology in shoulder arthroplasty.展望未来:肩关节置换术技术的全面综述
J Hand Microsurg. 2025 Feb 4;17(3):100224. doi: 10.1016/j.jham.2025.100224. eCollection 2025 May.

本文引用的文献

1
Quantification of patient-level costs in outpatient total shoulder arthroplasty.门诊全肩关节置换术患者层面费用的量化。
J Shoulder Elbow Surg. 2019 Jun;28(6):1066-1073. doi: 10.1016/j.jse.2018.10.006. Epub 2019 Jan 23.
2
Safety and patient satisfaction of outpatient shoulder arthroplasty.门诊肩关节置换术的安全性与患者满意度
JSES Open Access. 2018 Feb 15;2(1):13-17. doi: 10.1016/j.jses.2017.11.002. eCollection 2018 Mar.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验