Suppr超能文献

预测肋骨骨折患者的非计划插管:一种可解释的机器学习方法。

Predicting Unplanned Intubations in Rib Fracture Patients: An Interpretable Machine Learning Approach.

作者信息

Harry Shamir C, Kendall Melissa A, Grimsley Emily A, Wolansky Rachel L, Torikashvili Johnathan V, Boughanem David, Liang Yifan, Parikh Rajavi, Sujka Joseph, Kuo Paul C, Zander Tyler

机构信息

University of South Florida Morsani College of Medicine, Tampa, FL, USA.

Department of Surgery, OnetoMap Analytics, University of South Florida Morsani College of Medicine, Tampa, FL, USA.

出版信息

Am Surg. 2025 Jul 3:31348251358446. doi: 10.1177/00031348251358446.

Abstract

BackgroundTraumatic rib fractures can lead to respiratory complications necessitating unplanned intubation, but predictors have been inadequately delineated. We used interpretable machine learning to predict unplanned intubations in rib fracture patients while identifying predictors.MethodsTQIP 2017-2022 was queried for adult patients admitted to the hospital following a rib fracture injury. An XGBoost model was developed to predict unplanned intubation using variables that can be known on admission. A 70/10/20 train/validation/test split was used. SHapley Additive exPlanations (SHAP) were used for interpretation. SHAP allows individualized interpretation of predictors for each patient.ResultsThe cohort had 905 615 patients; 2.3% had unplanned intubations. Model metrics at the F1 maximizing threshold (0.78) included AUROC = 0.83, F1 score = 0.17, accuracy = 0.94, precision = 0.12, recall = 0.29, specificity = 0.95, and Brier score = 0.17. The most influential variables, as determined by mean absolute SHAP values, were admission location (0.62), Injury Severity Score (0.40), age (0.37), absence of comorbidities (0.18), pulse rate (0.14), pneumothorax (0.13), oxygen saturation (0.15), chronic obstructive pulmonary disease (0.11), respiratory rate (0.10), and sex (0.10). ICU admission was the location most influential in predicting an unplanned intubation. SHAP dependency plots determined the directional relationship between variables' values and SHAP values.DiscussionPatients above the F1 maximizing threshold had a 7.4-fold increase in unplanned intubations compared to those below. Nearly 30% of all unplanned intubations were captured at this threshold. Our model's identification of these high-risk patients and influential factors not previously considered in the literature could guide closer monitoring and early interventions.

摘要

背景

创伤性肋骨骨折可导致呼吸并发症,需要进行非计划插管,但相关预测因素尚未得到充分界定。我们使用可解释的机器学习方法来预测肋骨骨折患者的非计划插管情况,并识别预测因素。

方法

查询2017 - 2022年创伤质量改进计划(TQIP)中因肋骨骨折受伤入院的成年患者。使用入院时已知的变量开发了一个XGBoost模型来预测非计划插管。采用70/10/20的训练/验证/测试分割。使用SHapley加性解释(SHAP)进行解释。SHAP允许对每个患者的预测因素进行个体化解释。

结果

该队列有905615名患者;2.3%进行了非计划插管。在F1最大化阈值(0.78)下的模型指标包括:曲线下面积(AUROC)= 0.83、F1分数 = 0.17、准确率 = 0.94、精确率 = 0.12、召回率 = 0.29、特异性 = 0.95以及布里尔分数 = 0.17。根据平均绝对SHAP值确定的最具影响力的变量为入院地点(0.62)、损伤严重程度评分(0.40)、年龄(0.37)、无合并症(0.18)、脉搏率(0.14)、气胸(0.13)、氧饱和度(0.15)、慢性阻塞性肺疾病(0.11)、呼吸频率(0.10)和性别(0.10)。入住重症监护病房(ICU)是预测非计划插管最具影响力的入院地点。SHAP依赖图确定了变量值与SHAP值之间的方向关系。

讨论

高于F1最大化阈值的患者与低于该阈值的患者相比,非计划插管增加了7.4倍。在此阈值下捕获了近30%的所有非计划插管情况。我们的模型对这些高危患者和文献中以前未考虑的影响因素的识别可以指导更密切的监测和早期干预。

相似文献

本文引用的文献

4
The class imbalance problem.类别不平衡问题。
Nat Methods. 2021 Nov;18(11):1270-1272. doi: 10.1038/s41592-021-01302-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验