文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

瞳孔和神经元群体动力学的耦合揭示了觉醒对皮质处理的多种影响。

Coupling of pupil- and neuronal population dynamics reveals diverse influences of arousal on cortical processing.

机构信息

Universitat Pompeu Fabra, Center for Brain and Cognition, Computational Neuroscience Group, Barcelona, Spain.

University Medical Center Hamburg-Eppendorf, Department of Neurophysiology and Pathophysiology, Hamburg, Germany.

出版信息

Elife. 2022 Feb 8;11:e71890. doi: 10.7554/eLife.71890.


DOI:10.7554/eLife.71890
PMID:35133276
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8853659/
Abstract

Fluctuations in arousal, controlled by subcortical neuromodulatory systems, continuously shape cortical state, with profound consequences for information processing. Yet, how arousal signals influence cortical population activity in detail has so far only been characterized for a few selected brain regions. Traditional accounts conceptualize arousal as a homogeneous modulator of neural population activity across the cerebral cortex. Recent insights, however, point to a higher specificity of arousal effects on different components of neural activity and across cortical regions. Here, we provide a comprehensive account of the relationships between fluctuations in arousal and neuronal population activity across the human brain. Exploiting the established link between pupil size and central arousal systems, we performed concurrent magnetoencephalographic (MEG) and pupillographic recordings in a large number of participants, pooled across three laboratories. We found a cascade of effects relative to the peak timing of spontaneous pupil dilations: Decreases in low-frequency (2-8 Hz) activity in temporal and lateral frontal cortex, followed by increased high-frequency (>64 Hz) activity in mid-frontal regions, followed by monotonic and inverted U relationships with intermediate frequency-range activity (8-32 Hz) in occipito-parietal regions. Pupil-linked arousal also coincided with widespread changes in the structure of the aperiodic component of cortical population activity, indicative of changes in the excitation-inhibition balance in underlying microcircuits. Our results provide a novel basis for studying the arousal modulation of cognitive computations in cortical circuits.

摘要

觉醒波动受皮质下神经调制系统控制,不断塑造皮质状态,对信息处理有深远影响。然而,觉醒信号如何详细影响皮质群体活动,目前仅在少数选定的脑区进行了描述。传统观点将觉醒视为大脑皮质中神经群体活动的均匀调制者。然而,最近的研究结果表明,觉醒对不同的神经活动成分和不同的皮质区域具有更高的特异性。在这里,我们全面描述了人类大脑中觉醒波动与神经元群体活动之间的关系。利用瞳孔大小与中枢觉醒系统之间的既定联系,我们在三个实验室的大量参与者中同时进行了脑磁图(MEG)和瞳孔记录。我们发现了与自发瞳孔扩张峰值时间相关的一系列效应:颞叶和外侧额叶皮质的低频(2-8 Hz)活动减少,随后中额叶区域的高频(>64 Hz)活动增加,随后与中频率范围活动(8-32 Hz)呈单调和倒置 U 关系在枕顶叶区域。与瞳孔相关的觉醒也与皮质群体活动非周期性成分的广泛变化相吻合,表明基础微电路中兴奋-抑制平衡的变化。我们的结果为研究皮质回路中认知计算的觉醒调制提供了新的基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a25d/8853659/94dd252b0fb8/elife-71890-sa2-fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a25d/8853659/d67fee8c8d4b/elife-71890-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a25d/8853659/dfe094a146f8/elife-71890-fig1-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a25d/8853659/c3c67910f432/elife-71890-fig1-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a25d/8853659/825a12217de4/elife-71890-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a25d/8853659/eb8b15ff3aaa/elife-71890-fig2-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a25d/8853659/6bf5830a5087/elife-71890-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a25d/8853659/7ece37b798e9/elife-71890-fig3-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a25d/8853659/a98ba6522df7/elife-71890-fig3-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a25d/8853659/fdc6d4280665/elife-71890-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a25d/8853659/8742094a7fe5/elife-71890-fig4-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a25d/8853659/0a482d550e57/elife-71890-fig4-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a25d/8853659/b87b240321bd/elife-71890-fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a25d/8853659/8a13ba20b6e3/elife-71890-fig5-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a25d/8853659/0ddd91957892/elife-71890-fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a25d/8853659/d3d6c4a960c3/elife-71890-fig6-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a25d/8853659/5bddf5cc0c5f/elife-71890-sa2-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a25d/8853659/04426c00c261/elife-71890-sa2-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a25d/8853659/02a9cac9db11/elife-71890-sa2-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a25d/8853659/17a6cb3d1119/elife-71890-sa2-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a25d/8853659/eaad3c4d9bad/elife-71890-sa2-fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a25d/8853659/94dd252b0fb8/elife-71890-sa2-fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a25d/8853659/d67fee8c8d4b/elife-71890-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a25d/8853659/dfe094a146f8/elife-71890-fig1-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a25d/8853659/c3c67910f432/elife-71890-fig1-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a25d/8853659/825a12217de4/elife-71890-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a25d/8853659/eb8b15ff3aaa/elife-71890-fig2-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a25d/8853659/6bf5830a5087/elife-71890-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a25d/8853659/7ece37b798e9/elife-71890-fig3-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a25d/8853659/a98ba6522df7/elife-71890-fig3-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a25d/8853659/fdc6d4280665/elife-71890-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a25d/8853659/8742094a7fe5/elife-71890-fig4-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a25d/8853659/0a482d550e57/elife-71890-fig4-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a25d/8853659/b87b240321bd/elife-71890-fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a25d/8853659/8a13ba20b6e3/elife-71890-fig5-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a25d/8853659/0ddd91957892/elife-71890-fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a25d/8853659/d3d6c4a960c3/elife-71890-fig6-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a25d/8853659/5bddf5cc0c5f/elife-71890-sa2-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a25d/8853659/04426c00c261/elife-71890-sa2-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a25d/8853659/02a9cac9db11/elife-71890-sa2-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a25d/8853659/17a6cb3d1119/elife-71890-sa2-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a25d/8853659/eaad3c4d9bad/elife-71890-sa2-fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a25d/8853659/94dd252b0fb8/elife-71890-sa2-fig6.jpg

相似文献

[1]
Coupling of pupil- and neuronal population dynamics reveals diverse influences of arousal on cortical processing.

Elife. 2022-2-8

[2]
Modulating cortical excitability and cortical arousal by pupil self-regulation.

Nat Commun. 2025-5-16

[3]
Spectral Fingerprints of Cortical Neuromodulation.

J Neurosci. 2022-5-4

[4]
Pupil-associated states modulate excitability but not stimulus selectivity in primary auditory cortex.

J Neurophysiol. 2020-1-1

[5]
Indexing brain state-dependent pupil dynamics with simultaneous fMRI and optical fiber calcium recording.

Proc Natl Acad Sci U S A. 2020-3-5

[6]
Spectral signature and behavioral consequence of spontaneous shifts of pupil-linked arousal in human.

Elife. 2021-8-31

[7]
Multiple Transient Signals in Human Visual Cortex Associated with an Elementary Decision.

J Neurosci. 2017-6-7

[8]
Local cortical desynchronization and pupil-linked arousal differentially shape brain states for optimal sensory performance.

Elife. 2019-12-10

[9]
Back to Pupillometry: How Cortical Network State Fluctuations Tracked by Pupil Dynamics Could Explain Neural Signal Variability in Human Cognitive Neuroscience.

eNeuro. 2017-12-26

[10]
Relating Pupil Diameter and Blinking to Cortical Activity and Hemodynamics across Arousal States.

J Neurosci. 2023-2-8

引用本文的文献

[1]
Locus coeruleus tonic upregulation increases selectivity to inconspicuous auditory information in autistic compared to non-autistic individuals: a combined pupillometry and electroencephalography study.

Mol Autism. 2025-8-21

[2]
Pupil-linked arousal, cortical activity, and cognition in Alzheimer's disease.

Brain Commun. 2025-7-22

[3]
Evidence from pupillometry, fMRI, and RNN modelling shows that gain neuromodulation mediates task-relevant perceptual switches.

Elife. 2025-6-20

[4]
Computational modeling of ketamine-induced changes in gamma-band oscillations: The contribution of parvalbumin and somatostatin interneurons.

PLoS Comput Biol. 2025-6-9

[5]
The contribution of the locus coeruleus - norepinephrine system to the coupling between pupil-linked arousal and cortical state.

bioRxiv. 2025-5-13

[6]
Sleuthing subjectivity: a review of covert measures of consciousness.

Nat Rev Neurosci. 2025-5-23

[7]
Modulating cortical excitability and cortical arousal by pupil self-regulation.

Nat Commun. 2025-5-16

[8]
Early intervention increases reactive joint attention in autistic preschoolers with arousal regulation as mediator.

Eur Child Adolesc Psychiatry. 2025-5-10

[9]
The Interplay of Spontaneous Pupil-Size Fluctuations and EEG Power in Near-Threshold Detection.

Psychophysiology. 2025-3

[10]
Pupil size reveals arousal level fluctuations in human sleep.

Nat Commun. 2025-2-28

本文引用的文献

[1]
An increase of inhibition drives the developmental decorrelation of neural activity.

Elife. 2022-8-17

[2]
A unified model of the task-evoked pupil response.

Sci Adv. 2022-4-22

[3]
Context-dependent relationships between locus coeruleus firing patterns and coordinated neural activity in the anterior cingulate cortex.

Elife. 2022-1-7

[4]
Effects of Altered Excitation-Inhibition Balance on Decision Making in a Cortical Circuit Model.

J Neurosci. 2022-2-9

[5]
Noradrenergic modulation of rhythmic neural activity shapes selective attention.

Trends Cogn Sci. 2022-1

[6]
Respiration modulates oscillatory neural network activity at rest.

PLoS Biol. 2021-11

[7]
Visual thalamocortical mechanisms of waking state-dependent activity and alpha oscillations.

Neuron. 2022-1-5

[8]
Modality-specific tracking of attention and sensory statistics in the human electrophysiological spectral exponent.

Elife. 2021-10-21

[9]
Spectral signature and behavioral consequence of spontaneous shifts of pupil-linked arousal in human.

Elife. 2021-8-31

[10]
Neuronal correlates of the subjective experience of attention.

Eur J Neurosci. 2022-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索