Department of Ophthalmology, Gangneung Asan Hospital, Gangneung, Korea.
Asan Artificial Intelligence Institute, Hwaseong-si, Gyeonggi-do, Korea.
Transl Vis Sci Technol. 2022 Feb 1;11(2):11. doi: 10.1167/tvst.11.2.11.
To investigate the feasibility of extracting a low-dimensional latent structure of anterior segment optical coherence tomography (AS-OCT) images by use of a β-variational autoencoder (β-VAE).
We retrospectively collected 2111 AS-OCT images from 2111 eyes of 1261 participants from the ongoing Asan Glaucoma Progression Study. After hyperparameter optimization, the images were analyzed with β-VAE.
The mean participant age was 64.4 years, with mean values of visual field index and mean deviation of 86.4% and -5.33 dB, respectively. After experiments, a latent space size of 6 and β value of 53 were selected for latent space analysis with β-VAE. Latent variables were successfully disentangled, showing readily interpretable distinct characteristics, such as the overall depth and area of the anterior chamber (η1), pupil diameter (η2), iris profile (η3 and η4), and corneal curvature (η5).
β-VAE can successfully be applied for disentangled latent space representation of AS-OCT images, revealing the high possibility of applying unsupervised learning in the medical image analysis.
This study demonstrates that a deep learning-based latent space model can be applied for the analysis of AS-OCT images.
通过使用β变分自动编码器(β-VAE)来研究从前节光学相干断层扫描(AS-OCT)图像中提取低维潜在结构的可行性。
我们从正在进行的 Asan 青光眼进展研究中回顾性地收集了 2111 名参与者的 2111 只眼的 2111 份 AS-OCT 图像。在进行超参数优化后,使用 β-VAE 对图像进行了分析。
参与者的平均年龄为 64.4 岁,视野指数和平均偏差值分别为 86.4%和-5.33dB。经过实验,选择潜在空间大小为 6 和β值为 53 进行潜在空间分析β-VAE。潜在变量成功地被分离,显示出易于解释的明显特征,例如前房的整体深度和面积(η1)、瞳孔直径(η2)、虹膜轮廓(η3 和η4)和角膜曲率(η5)。
β-VAE 可以成功地应用于 AS-OCT 图像的解缠潜在空间表示,揭示了在医学图像分析中应用无监督学习的可能性。
本研究表明,基于深度学习的潜在空间模型可用于 AS-OCT 图像的分析。