文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

人工智能在青光眼诊断与预测中的应用。

The application of artificial intelligence in glaucoma diagnosis and prediction.

作者信息

Zhang Linyu, Tang Li, Xia Min, Cao Guofan

机构信息

The Affiliated Eye Hospital of Nanjing Medical University, Nanjing, China.

The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China.

出版信息

Front Cell Dev Biol. 2023 May 4;11:1173094. doi: 10.3389/fcell.2023.1173094. eCollection 2023.


DOI:10.3389/fcell.2023.1173094
PMID:37215077
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10192631/
Abstract

Artificial intelligence is a multidisciplinary and collaborative science, the ability of deep learning for image feature extraction and processing gives it a unique advantage in dealing with problems in ophthalmology. The deep learning system can assist ophthalmologists in diagnosing characteristic fundus lesions in glaucoma, such as retinal nerve fiber layer defects, optic nerve head damage, optic disc hemorrhage, etc. Early detection of these lesions can help delay structural damage, protect visual function, and reduce visual field damage. The development of deep learning led to the emergence of deep convolutional neural networks, which are pushing the integration of artificial intelligence with testing devices such as visual field meters, fundus imaging and optical coherence tomography to drive more rapid advances in clinical glaucoma diagnosis and prediction techniques. This article details advances in artificial intelligence combined with visual field, fundus photography, and optical coherence tomography in the field of glaucoma diagnosis and prediction, some of which are familiar and some not widely known. Then it further explores the challenges at this stage and the prospects for future clinical applications. In the future, the deep cooperation between artificial intelligence and medical technology will make the datasets and clinical application rules more standardized, and glaucoma diagnosis and prediction tools will be simplified in a single direction, which will benefit multiple ethnic groups.

摘要

人工智能是一门多学科协作的科学,深度学习的图像特征提取与处理能力使其在处理眼科问题方面具有独特优势。深度学习系统可协助眼科医生诊断青光眼的特征性眼底病变,如视网膜神经纤维层缺损、视神经乳头损害、视盘出血等。早期发现这些病变有助于延缓结构损伤、保护视功能并减少视野损害。深度学习的发展催生了深度卷积神经网络,推动人工智能与视野计、眼底成像及光学相干断层扫描等检测设备融合,促使青光眼临床诊断与预测技术取得更快进展。本文详述了人工智能结合视野、眼底摄影及光学相干断层扫描在青光眼诊断与预测领域的进展,其中一些为人熟知,一些鲜为人知。接着进一步探讨了现阶段面临的挑战以及未来临床应用前景。未来,人工智能与医疗技术的深度合作将使数据集和临床应用规则更加标准化,青光眼诊断与预测工具将朝着单一方向简化,这将惠及多个种族群体。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2d7/10192631/b756baf5b2fe/fcell-11-1173094-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2d7/10192631/6ab50e5c8b2a/fcell-11-1173094-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2d7/10192631/e6f1c3c204bc/fcell-11-1173094-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2d7/10192631/b756baf5b2fe/fcell-11-1173094-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2d7/10192631/6ab50e5c8b2a/fcell-11-1173094-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2d7/10192631/e6f1c3c204bc/fcell-11-1173094-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2d7/10192631/b756baf5b2fe/fcell-11-1173094-g003.jpg

相似文献

[1]
The application of artificial intelligence in glaucoma diagnosis and prediction.

Front Cell Dev Biol. 2023-5-4

[2]
Detection of Progressive Glaucomatous Optic Nerve Damage on Fundus Photographs with Deep Learning.

Ophthalmology. 2021-3

[3]
Artificial intelligence and deep learning in glaucoma: Current state and future prospects.

Prog Brain Res. 2020

[4]
Artificial Intelligence Algorithms to Diagnose Glaucoma and Detect Glaucoma Progression: Translation to Clinical Practice.

Transl Vis Sci Technol. 2020-10-15

[5]
[Aiming for zero blindness].

Nippon Ganka Gakkai Zasshi. 2015-3

[6]
A Review of Deep Learning for Screening, Diagnosis, and Detection of Glaucoma Progression.

Transl Vis Sci Technol. 2020-7

[7]
Deep Learning-Based Glaucoma Screening Using Regional RNFL Thickness in Fundus Photography.

Diagnostics (Basel). 2022-11-21

[8]
From Machine to Machine: An OCT-Trained Deep Learning Algorithm for Objective Quantification of Glaucomatous Damage in Fundus Photographs.

Ophthalmology. 2018-12-20

[9]
[Artificial intelligence and glaucoma: A literature review].

J Fr Ophtalmol. 2022-2

[10]
Artificial intelligence and complex statistical modeling in glaucoma diagnosis and management.

Curr Opin Ophthalmol. 2021-3-1

引用本文的文献

[1]
Applications of machine learning in glaucoma diagnosis based on tabular data: a systematic review.

BMC Biomed Eng. 2025-8-1

[2]
Assessment of Retinal Microcirculation in Primary Open-Angle Glaucoma Using Adaptive Optics and OCT Angiography: Correlation with Structural and Functional Damage.

J Clin Med. 2025-7-14

[3]
Guidelines for glaucoma imaging classification, annotation, and quality control for artificial intelligence applications.

Int J Ophthalmol. 2025-7-18

[4]
GAINSeq: glaucoma pre-symptomatic detection using machine learning models driven by next-generation sequencing data.

Sci Rep. 2025-7-2

[5]
Deep learning-driven approach for cataract management: towards precise identification and predictive analytics.

Front Cell Dev Biol. 2025-5-30

[6]
Artificial intelligence in ophthalmology: opportunities, challenges, and ethical considerations.

Med Hypothesis Discov Innov Ophthalmol. 2025-5-10

[7]
Enhancing Ophthalmic Diagnosis and Treatment with Artificial Intelligence.

Medicina (Kaunas). 2025-2-28

[8]
Deep Learning in Glaucoma Detection and Progression Prediction: A Systematic Review and Meta-Analysis.

Biomedicines. 2025-2-10

[9]
The utilization of artificial intelligence in glaucoma: diagnosis versus screening.

Front Ophthalmol (Lausanne). 2024-3-6

[10]
Artificial intelligence for the detection of glaucoma with SD-OCT images: a systematic review and Meta-analysis.

Int J Ophthalmol. 2024-3-18

本文引用的文献

[1]
Use of multimodal dataset in AI for detecting glaucoma based on fundus photographs assessed with OCT: focus group study on high prevalence of myopia.

BMC Med Imaging. 2022-11-24

[2]
Dynamic analysis of iris changes and a deep learning system for automated angle-closure classification based on AS-OCT videos.

Eye Vis (Lond). 2022-11-5

[3]
Deep Learning Estimation of 10-2 Visual Field Map Based on Circumpapillary Retinal Nerve Fiber Layer Thickness Measurements.

Am J Ophthalmol. 2023-2

[4]
Visual Field Prediction: Evaluating the Clinical Relevance of Deep Learning Models.

Ophthalmol Sci. 2022-9-13

[5]
Development of Cumulative Order-Preserving Image Transformation Based Variational Autoencoder for Anterior Segment Optical Coherence Tomography Images.

Transl Vis Sci Technol. 2022-8-1

[6]
Retinal Glaucoma Public Datasets: What Do We Have and What Is Missing?

J Clin Med. 2022-7-2

[7]
Three-Dimensional Multi-Task Deep Learning Model to Detect Glaucomatous Optic Neuropathy and Myopic Features From Optical Coherence Tomography Scans: A Retrospective Multi-Centre Study.

Front Med (Lausanne). 2022-6-15

[8]
A deep-learning system predicts glaucoma incidence and progression using retinal photographs.

J Clin Invest. 2022-6-1

[9]
Deep Learning for Glaucoma Detection and Identification of Novel Diagnostic Areas in Diverse Real-World Datasets.

Transl Vis Sci Technol. 2022-5-2

[10]
Validation of artificial intelligence prediction models for skin cancer diagnosis using dermoscopy images: the 2019 International Skin Imaging Collaboration Grand Challenge.

Lancet Digit Health. 2022-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索