Dept. of Electronic Information Engineering, School of Information Engineering, Nanchang University, Nanchang, People's Republic of China.
PLoS One. 2022 Feb 8;17(2):e0263641. doi: 10.1371/journal.pone.0263641. eCollection 2022.
One of the major reasons that limit the practical applications of a brain-computer interface (BCI) is its long calibration time. In this paper, we propose a novel approach to reducing the calibration time of motor imagery (MI)-based BCIs without sacrificing classification accuracy. The approach aims to augment the training set size of a new subject by generating artificial electroencephalogram (EEG) data from a few training trials initially available. The artificial EEG data are obtained by first performing empirical mode decomposition (EMD) and then mixing resulting intrinsic mode functions (IMFs). The original training trials are aligned to common reference point with Euclidean alignment (EA) method prior to EMD and pooled together with artificial trials as the expended training set, which is input into a linear discriminant analysis (LDA) classifier or a logistic regression (LR) classifier. The performance of the proposed algorithm is evaluated on two motor imagery (MI) data sets and compared with that of the algorithm trained with only real EEG data (Baseline) and the algorithm trained with expanded EEG data by EMD without data alignment. The experimental results showed that the proposed algorithm can significantly reduce the amount of training data needed to achieve a given performance level and thus is expected to facilitate the real-world applications of MI-based BCIs.
限制脑机接口 (BCI) 实际应用的一个主要原因是其校准时间长。在本文中,我们提出了一种新的方法,可以在不牺牲分类准确性的情况下减少基于运动想象 (MI) 的 BCI 的校准时间。该方法旨在通过从最初可用的几个训练试次中生成人工脑电图 (EEG) 数据来增加新受试者的训练集大小。人工 EEG 数据是通过首先执行经验模态分解 (EMD) 然后混合得到的固有模态函数 (IMF) 获得的。在 EMD 之前,原始训练试次通过欧几里得对齐 (EA) 方法与公共参考点对齐,并与人工试次一起汇集作为扩展的训练集,输入到线性判别分析 (LDA) 分类器或逻辑回归 (LR) 分类器中。在两个运动想象 (MI) 数据集上评估了所提出算法的性能,并与仅使用真实 EEG 数据训练的算法 (基线) 和使用 EMD 扩展 EEG 数据但不进行数据对齐训练的算法进行了比较。实验结果表明,所提出的算法可以显著减少达到给定性能水平所需的训练数据量,从而有望促进基于 MI 的 BCI 的实际应用。