School of Medicine, Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland.
Bioinformatics. 2022 Mar 28;38(7):2066-2069. doi: 10.1093/bioinformatics/btac045.
Endocrine disruptors are a rising concern due to the wide array of health issues that it can cause. Although there are tools for mode of action (MoA)-based prediction of endocrine disruption (e.g. QSAR Toolbox and iSafeRat), none of them is based on toxicogenomics data. Here, we present EDTox, an R Shiny application enabling users to explore and use a computational method that we have recently published to identify and prioritize endocrine disrupting (ED) chemicals based on toxicogenomic data. The EDTox pipeline utilizes previously trained toxicogenomic-driven classifiers to make predictions on new untested compounds by using their molecular initiating events. Furthermore, the proposed R Shiny app allows users to extend the prediction systems by training and adding new classifiers based on new available toxicogenomic data. This functionality helps users to explore the ED potential of chemicals in new, untested exposure scenarios.
This tool is available as web application (www.edtox.fi) and stand-alone software on GitHub and Zenodo (https://doi.org/10.5281/zenodo.5817093).
Supplementary data are available at Bioinformatics online.
由于内分泌干扰物会引发广泛的健康问题,因此其受到了越来越多的关注。虽然已经有一些基于作用模式(MoA)的内分泌干扰预测工具(例如 QSAR Toolbox 和 iSafeRat),但没有一个是基于毒理基因组学数据的。在这里,我们介绍了 EDTox,这是一个 R Shiny 应用程序,它使用户能够探索和使用我们最近发表的一种计算方法,该方法基于毒理基因组学数据来识别和优先考虑内分泌干扰(ED)化学品。EDTox 管道利用先前经过训练的毒理基因组驱动分类器,通过使用分子起始事件对新的未经测试的化合物进行预测。此外,所提出的 R Shiny 应用程序允许用户通过基于新的可用毒理基因组数据进行训练和添加新的分类器来扩展预测系统。此功能有助于用户在新的未经测试的暴露场景中探索化学品的 ED 潜力。
该工具可作为网络应用程序(www.edtox.fi)以及 GitHub 和 Zenodo 上的独立软件使用(https://doi.org/10.5281/zenodo.5817093)。
补充数据可在 Bioinformatics 在线获取。