Molecular Epidemiology, Biomedical Data Sciences, LUMC, 2333 ZC Leiden, The Netherlands.
Leiden Computational Biology Center, Biomedical Data Sciences, LUMC, 2333 ZC Leiden, The Netherlands.
Bioinformatics. 2022 Aug 2;38(15):3847-3849. doi: 10.1093/bioinformatics/btac388.
1H-NMR metabolomics is rapidly becoming a standard resource in large epidemiological studies to acquire metabolic profiles in large numbers of samples in a relatively low-priced and standardized manner. Concomitantly, metabolomics-based models are increasingly developed that capture disease risk or clinical risk factors. These developments raise the need for user-friendly toolbox to inspect new 1H-NMR metabolomics data and project a wide array of previously established risk models.
We present MiMIR (Metabolomics-based Models for Imputing Risk), a graphical user interface that provides an intuitive framework for ad hoc statistical analysis of Nightingale Health's 1H-NMR metabolomics data and allows for the projection and calibration of 24 pre-trained metabolomics-based models, without any pre-required programming knowledge.
The R-shiny package is available in CRAN or downloadable at https://github.com/DanieleBizzarri/MiMIR, together with an extensive user manual (also available as Supplementary Documents to the article).
Supplementary data are available at Bioinformatics online.
1H-NMR 代谢组学正在迅速成为大型流行病学研究中的标准资源,以相对低廉且标准化的方式获取大量样本中的代谢谱。同时,基于代谢组学的模型也越来越多地被开发出来,以捕捉疾病风险或临床风险因素。这些发展提出了对用户友好的工具箱的需求,以检查新的 1H-NMR 代谢组学数据并预测广泛的先前建立的风险模型。
我们提出了 MiMIR(基于代谢组学的风险估算模型),这是一个图形用户界面,为诺丁汉健康的 1H-NMR 代谢组学数据的特定于统计的分析提供了直观的框架,并允许对 24 个预先训练的基于代谢组学的模型进行预测和校准,而无需任何预先的编程知识。
R-shiny 包可在 CRAN 中获得,也可在 https://github.com/DanieleBizzarri/MiMIR 上下载,同时提供了详细的用户手册(也可作为文章的补充文件)。
补充数据可在生物信息学在线获得。