Suppr超能文献

Qiber3D——一个开源软件包,用于从 3D 图像堆栈中进行网络的定量分析。

Qiber3D-an open-source software package for the quantitative analysis of networks from 3D image stacks.

机构信息

Centre for Biomedical Technologies, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, QLD 4059, Australia.

School of Mechanical, Medical and Process Engineering, Science and Engineering Faculty, Queensland University of Technology, 2 George St, Brisbane City QLD 4000, Australia.

出版信息

Gigascience. 2022 Feb 4;11. doi: 10.1093/gigascience/giab091.

Abstract

BACKGROUND

Optical slice microscopy is commonly used to observe cellular morphology in 3D tissue culture, e.g., the formation of cell-derived networks. The morphometric quantification of these networks is essential to study the cellular phenotype. Commonly, the quantitative measurements are performed on 2D projections of the image stack, resulting in the loss of information in the third dimension. Currently available 3D image analysis tools rely on manual interactions with the software and are therefore not feasible for large datasets.

FINDINGS

Here we present Qiber3D, an open-source image processing toolkit. The software package includes the essential image analysis procedures required for image processing, from the raw image to the quantified data. Optional pre-processing steps can be switched on/off depending on the input data to allow for analyzing networks from a variety of sources. Two reconstruction algorithms are offered to meet the requirements for a wide range of network types. Furthermore, Qiber3D's rendering capabilities enable the user to inspect each step of the image analysis process interactively to ensure the creation of an optimal workflow for each application.

CONCLUSIONS

Qiber3D is implemented as a Python package, and its source code is freely available at https://github.com/theia-dev/Qiber3D. The toolkit was designed using a building block principle to enable the analysis of a variety of structures, such as vascular networks, neuronal structures, or scaffolds from numerous input formats. While Qiber3D can be used interactively in the Python console, it is aimed at unsupervised automation to process large image datasets efficiently.

摘要

背景

光学切片显微镜常用于观察 3D 组织培养中的细胞形态,例如细胞衍生网络的形成。对这些网络进行形态计量学定量分析对于研究细胞表型至关重要。通常,定量测量是在图像堆栈的 2D 投影上进行的,导致第三维信息的丢失。目前可用的 3D 图像分析工具依赖于与软件的手动交互,因此对于大型数据集不可行。

发现

这里我们介绍了 Qiber3D,这是一个开源图像处理工具包。该软件包包括从原始图像到量化数据的图像处理所需的基本图像分析程序。可以根据输入数据打开/关闭可选的预处理步骤,以允许分析来自各种来源的网络。提供了两种重建算法,以满足各种网络类型的要求。此外,Qiber3D 的渲染功能使用户能够交互式检查图像分析过程的每一步,以确保为每个应用程序创建最佳工作流程。

结论

Qiber3D 作为 Python 包实现,其源代码可在 https://github.com/theia-dev/Qiber3D 上免费获得。该工具包采用构建块原理设计,能够分析各种结构,如血管网络、神经元结构或来自多种输入格式的支架。虽然 Qiber3D 可以在 Python 控制台中交互式使用,但它旨在实现无人监督的自动化,以有效地处理大型图像数据集。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75f5/8848317/c5b83bc6e3a3/giab091fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验