Suppr超能文献

基于增强 Rao-1 算法的光伏模型参数估计。

Photovoltaic models parameter estimation via an enhanced Rao-1 algorithm.

机构信息

School of Science, Qiongtai Normal University, Haikou, 571127, China.

School of Computer Science, China University of Geosciences, Wuhan 430074, China.

出版信息

Math Biosci Eng. 2022 Jan;19(2):1128-1153. doi: 10.3934/mbe.2022052. Epub 2021 Nov 30.

Abstract

The accuracy of unknown parameters determines the accuracy of photovoltaic (PV) models that occupy an important position in the PV power generation system. Due to the complexity of the equation equivalent of PV models, estimating the parameters of the PV model is still an arduous task. In order to accurately and reliably estimate the unknown parameters in PV models, in this paper, an enhanced Rao-1 algorithm is proposed. The main point of enhancement lies in i) a repaired evolution operator is presented; ii) to prevent the Rao-1 algorithm from falling into a local optimum, a new evolution operator is developed; iii) in order to enable population size to change adaptively with the evolutionary process, the population size linear reduction strategy is employed. To verify the validity of ERao-1 algorithm, we embark a study on parameter estimation of three different PV models. Experimental results show that the proposed ERao-1 algorithm performs better than existing parameter estimation algorithms in terms of the accuracy and reliability, especially for the double diode model with RMSE 9.8248E-04, three diode model with RMSE 9.8257E-04 for the R.T.C France silicon cell, and 2.4251E-03 for the three diode model of Photowatt- PWP201 cell. In addition, the fitting curve of the simulated data and the measured data also shows the accuracy of the estimated parameters.

摘要

未知参数的准确性决定了在光伏 (PV) 发电系统中占据重要地位的光伏模型的准确性。由于光伏模型的方程等效复杂性,估计光伏模型的参数仍然是一项艰巨的任务。为了准确可靠地估计光伏模型中的未知参数,本文提出了一种增强的 Rao-1 算法。增强的主要要点在于:i)提出了一个修复的进化算子;ii)为了防止 Rao-1 算法陷入局部最优,开发了一个新的进化算子;iii)为了使种群大小能够随进化过程自适应变化,采用了种群大小线性减小策略。为了验证 ERao-1 算法的有效性,我们对三种不同的 PV 模型的参数估计进行了研究。实验结果表明,与现有的参数估计算法相比,所提出的 ERao-1 算法在准确性和可靠性方面表现更好,特别是对于具有 RMSE 9.8248E-04 的双二极管模型、具有 RMSE 9.8257E-04 的三二极管模型对于 R.T.C 法国硅电池,以及 Photowatt-PWP201 电池的三二极管模型为 2.4251E-03。此外,模拟数据和测量数据的拟合曲线也显示了估计参数的准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验