Suppr超能文献

反正弦余弦原子搜索优化(ASCASO):一种用于光伏模型参数估计的新方法。

Anti-sine-cosine atom search optimization (ASCASO): a novel approach for parameter estimation of PV models.

机构信息

College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou, 325035, China.

School of Digital Media, Shenzhen Institute of Information Technology, Shenzhen, 518172, China.

出版信息

Environ Sci Pollut Res Int. 2023 Sep;30(44):99620-99651. doi: 10.1007/s11356-023-28777-2. Epub 2023 Aug 24.

Abstract

Nowadays, solar power generation has gradually become a part of electric energy sharing. How to effectively enhance the energy conversion efficiency of solar cells and components has gradually emerged as a focal point of research. This paper presents a boosted atomic search optimization (ASO) with a new anti-sine-cosine mechanism (ASCASO) to realize the parameter estimation of photovoltaic (PV) models. The anti-sine-cosine mechanism is inspired by the update principle of sine cosine algorithm (SCA) and the mutation strategy of linear population size reduction adaptive differential evolution (LSHADE). The working principle of anti-sine-cosine mechanism is to utilize two mutation formulas containing arcsine and arccosine functions to further update the position of atoms. The introduction of anti-sine-cosine mechanism achieves the populations' random handover and promotes the neighbors' information communication. For better evaluation, the proposed ASCASO is devoted to estimate parameters of three PV models of R.T.C France, one Photowat-PWP201 PV module model, and two commercial polycrystalline PV panels including STM6-40/36 and STM6-120/36 with monocrystalline cells. The proposed ASCASO is compared with nine reported comparative algorithms to assess the performance. The results of parameter estimation for different PV models of various methods demonstrate that ASCASO performs more accurately and reliably than other reported comparative methods. Thus, ASCASO can be considered a highly effective approach for accurately estimating the parameters of PV models.

摘要

如今,太阳能发电已逐渐成为电能共享的一部分。如何有效提高太阳能电池和组件的能量转换效率,逐渐成为研究的焦点。本文提出了一种带有新型反正弦余弦机制的增强原子搜索优化(ASO)算法(ASCASO),以实现光伏(PV)模型的参数估计。反正弦余弦机制受正弦余弦算法(SCA)的更新原理和线性种群大小减少自适应差分进化(LSHADE)的突变策略启发。反正弦余弦机制的工作原理是利用两个包含反正弦和反余弦函数的突变公式来进一步更新原子的位置。反正弦余弦机制的引入实现了种群的随机切换,促进了邻居之间的信息交流。为了更好地评估,所提出的 ASCASO 致力于估计 R.T.C France 的三种 PV 模型、一个 Photowat-PWP201 PV 模块模型以及两个包含单晶电池的商用多晶硅光伏板 STM6-40/36 和 STM6-120/36 的参数。将所提出的 ASCASO 与九种已报道的比较算法进行比较,以评估其性能。不同方法对不同 PV 模型的参数估计结果表明,ASCASO 比其他已报道的比较方法更准确可靠。因此,ASCASO 可以被认为是一种准确估计 PV 模型参数的高效方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验