Wolfowicz Gary, Anderson Christopher P, Diler Berk, Poluektov Oleg G, Heremans F Joseph, Awschalom David D
Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA.
Center for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, IL 60439, USA.
Sci Adv. 2020 May 1;6(18):eaaz1192. doi: 10.1126/sciadv.aaz1192. eCollection 2020 May.
Solid-state quantum emitters with spin registers are promising platforms for quantum communication, yet few emit in the narrow telecom band necessary for low-loss fiber networks. Here, we create and isolate near-surface single vanadium dopants in silicon carbide (SiC) with stable and narrow emission in the O band, with brightness allowing cavity-free detection in a wafer-scale material. In vanadium ensembles, we characterize the complex orbital physics in all five available sites in 4H-SiC and 6H-SiC. The optical transitions are sensitive to mass shifts from local silicon and carbon isotopes, enabling optically resolved nuclear spin registers. Optically detected magnetic resonance in the ground and excited orbital states reveals a variety of hyperfine interactions with the vanadium nuclear spin and clock transitions for quantum memories. Last, we demonstrate coherent quantum control of the spin state. These results provide a path for telecom emitters in the solid state for quantum applications.
具有自旋寄存器的固态量子发射器是量子通信的有前景的平台,但很少有能在低损耗光纤网络所需的窄电信频段发射的。在此,我们在碳化硅(SiC)中创建并分离出近表面单个钒掺杂剂,其在O波段具有稳定且窄的发射,亮度足以在晶圆级材料中进行无腔检测。在钒系综中,我们表征了4H-SiC和6H-SiC中所有五个可用位点的复杂轨道物理。光学跃迁对来自局部硅和碳同位素的质量位移敏感,从而实现光学分辨的核自旋寄存器。在基态和激发轨道态中的光探测磁共振揭示了与钒核自旋的各种超精细相互作用以及用于量子存储器的时钟跃迁。最后,我们展示了对自旋态的相干量子控制。这些结果为固态量子应用中的电信发射器提供了一条途径。