Uengwetwanit Tanaporn, Chutiwitoonchai Nopporn, Wichapong Kanin, Karoonuthaisiri Nitsara
National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand.
Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD Maastricht, the Netherlands.
Comput Struct Biotechnol J. 2022;20:882-890. doi: 10.1016/j.csbj.2022.02.001. Epub 2022 Feb 4.
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 2019 has posed a serious threat to global health and the economy for over two years, prompting the need for development of antiviral inhibitors. Due to its vital role in viral replication, RNA-dependent RNA polymerase (RdRp) is a promising therapeutic target. Herein, we analyzed amino acid sequence conservation of RdRp across coronaviruses. The conserved amino acids at the catalytic binding site served as the ligand-contacting residues for screening to elucidate possible resistant mutation. Molecular docking was employed to screen inhibitors of SARS-CoV-2 from the ZINC ChemDiv database. The top-ranked compounds selected from GOLD docking were further investigated for binding modes at the conserved residues of RdRp, and ten compounds were selected for experimental validation. Of which, three compounds exhibited promising antiviral activity. The most promising candidate showed a half-maximal effective concentration (EC) of 5.04 µM. Molecular dynamics simulations, binding free-energy calculation and hydrogen bond analysis were performed to elucidate the critical interactions providing a foundation for developing lead compounds effective against SARS-CoV-2.
2019年严重急性呼吸综合征冠状病毒2(SARS-CoV-2)的出现,在两年多的时间里对全球健康和经济构成了严重威胁,这促使人们需要开发抗病毒抑制剂。由于RNA依赖性RNA聚合酶(RdRp)在病毒复制中起着至关重要的作用,它是一个很有前景的治疗靶点。在此,我们分析了冠状病毒中RdRp的氨基酸序列保守性。催化结合位点的保守氨基酸作为配体接触残基用于筛选,以阐明可能的抗性突变。采用分子对接从ZINC ChemDiv数据库中筛选SARS-CoV-2抑制剂。对从GOLD对接中选出的排名靠前的化合物,进一步研究其在RdRp保守残基处的结合模式,并选择了10种化合物进行实验验证。其中,三种化合物表现出有前景的抗病毒活性。最有前景的候选化合物的半数最大有效浓度(EC)为5.04µM。进行了分子动力学模拟、结合自由能计算和氢键分析,以阐明关键相互作用,为开发有效对抗SARS-CoV-2的先导化合物奠定基础。