Suppr超能文献

通过两性离子探究静电和诱导场效应对绿色和红色 Kaede 荧光蛋白生色团的络合作用。

Complexation of Green and Red Kaede Fluorescent Protein Chromophores by a Zwitterion to Probe Electrostatic and Induction Field Effects.

机构信息

School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom.

Department of Physics, Stockholm University, SE-10691 Stockholm, Sweden.

出版信息

J Phys Chem A. 2022 Feb 24;126(7):1158-1167. doi: 10.1021/acs.jpca.1c10628. Epub 2022 Feb 9.

Abstract

The photophysics of green fluorescent protein (GFP) and red Kaede fluorescent protein (rKFP) are defined by the intrinsic properties of the light-absorbing chromophore and its interaction with the protein binding pocket. This work deploys photodissociation action spectroscopy to probe the absorption profiles for a series of synthetic GFP and rKFP chromophores as the bare anions and as complexes with the betaine zwitterion, which is assumed as a model for dipole microsolvation. Electronic structure calculations and energy decomposition analysis using Symmetry-Adapted Perturbation Theory are used to characterize gas-phase structures and complex cohesion forces. The calculations reveal a preponderance for coordination of betaine to the phenoxide deprotonation site predominantly through electrostatic forces. Calculations using the STEOM-DLPNO-CCSD method are able to reproduce absolute and relative vertical excitation energies for the bare anions and anion-betaine complexes. On the other hand, treatment of the betaine molecule with a point-charge model, in which the charges are computed from some common electron density population analysis schemes, show that just electrostatic and point-charge induction interactions are unable to account for the betaine-induced spectral shift. The present methodology could be applied to investigate cluster forces and optical properties in other gas-phase ion-zwitterion complexes.

摘要

绿色荧光蛋白(GFP)和红色 Kaede 荧光蛋白(rKFP)的光物理性质由吸光发色团的固有性质及其与蛋白质结合口袋的相互作用决定。本工作采用光解作用光谱法研究了一系列合成 GFP 和 rKFP 发色团的吸收谱,包括其作为游离阴离子以及与甜菜碱两性离子形成复合物时的吸收谱。甜菜碱两性离子被假定为偶极微溶的模型。采用对称性自适应微扰理论(Symmetry-Adapted Perturbation Theory)的电子结构计算和能量分解分析用于对气相结构和复合物内聚能进行特征化描述。计算结果表明,甜菜碱主要通过静电力优先配位到酚氧负离子去质子化位点。使用 STEOM-DLPNO-CCSD 方法进行的计算能够重现游离阴离子和阴离子-甜菜碱复合物的绝对和相对垂直激发能。另一方面,用点电荷模型处理甜菜碱分子,其中电荷是根据一些常见的电子密度布居分析方案计算得到的,表明仅仅静电和点电荷诱导相互作用无法解释甜菜碱引起的光谱位移。本方法可以应用于研究其他气相离子-两性离子复合物中的团簇力和光学性质。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b079/9628818/f2f3a9bbd832/jp1c10628_0001.jpg

相似文献

1
Complexation of Green and Red Kaede Fluorescent Protein Chromophores by a Zwitterion to Probe Electrostatic and Induction Field Effects.
J Phys Chem A. 2022 Feb 24;126(7):1158-1167. doi: 10.1021/acs.jpca.1c10628. Epub 2022 Feb 9.
2
The Effect of an Electric Field on the Spectroscopic Properties of the Isolated Green Fluorescent Protein Chromophore Anion.
Chemphyschem. 2018 Jul 17;19(14):1686-1690. doi: 10.1002/cphc.201800225. Epub 2018 May 11.
3
Quantum chemistry behind bioimaging: insights from ab initio studies of fluorescent proteins and their chromophores.
Acc Chem Res. 2012 Feb 21;45(2):265-75. doi: 10.1021/ar2001556. Epub 2011 Sep 1.
4
Action spectroscopy of the isolated red Kaede fluorescent protein chromophore.
J Chem Phys. 2021 Sep 28;155(12):124304. doi: 10.1063/5.0063258.
5
Electrostatic Spectral Tuning Maps for Biological Chromophores.
J Phys Chem B. 2019 Jun 13;123(23):4813-4824. doi: 10.1021/acs.jpcb.9b00489. Epub 2019 Mar 26.
6
Photoabsorption of green and red fluorescent protein chromophore anions in vacuo.
Biophys Chem. 2007 Sep;129(2-3):218-23. doi: 10.1016/j.bpc.2007.06.003. Epub 2007 Jun 14.
7
Effect of Solvation on Electron Detachment and Excitation Energies of a Green Fluorescent Protein Chromophore Variant.
J Phys Chem B. 2016 May 19;120(19):4410-20. doi: 10.1021/acs.jpcb.6b03723. Epub 2016 May 4.
9
Photodetachment spectra of deprotonated fluorescent protein chromophore anions.
J Phys Chem A. 2012 Aug 2;116(30):7943-9. doi: 10.1021/jp3058349. Epub 2012 Jul 19.
10
Chromophore-protein coupling beyond nonpolarizable models: understanding absorption in green fluorescent protein.
J Chem Theory Comput. 2015 Oct 13;11(10):4825-39. doi: 10.1021/acs.jctc.5b00650. Epub 2015 Sep 16.

引用本文的文献

1
2
Photophysics of the red-form Kaede chromophore.
Chem Sci. 2023 Mar 9;14(14):3763-3775. doi: 10.1039/d3sc00368j. eCollection 2023 Apr 5.

本文引用的文献

1
Action spectroscopy of the isolated red Kaede fluorescent protein chromophore.
J Chem Phys. 2021 Sep 28;155(12):124304. doi: 10.1063/5.0063258.
2
How Can We Predict Accurate Electrochromic Shifts for Biochromophores? A Case Study on the Photosynthetic Reaction Center.
J Chem Theory Comput. 2021 Mar 9;17(3):1858-1873. doi: 10.1021/acs.jctc.0c01152. Epub 2021 Feb 10.
3
Accuracy of DLPNO-CCSD(T): Effect of Basis Set and System Size.
J Phys Chem A. 2021 Feb 25;125(7):1553-1563. doi: 10.1021/acs.jpca.0c11270. Epub 2021 Feb 9.
4
Tag-Free, Temperature Dependent Infrared Spectra of the GFP Chromophore: Revisiting the Question of Isomerism.
J Phys Chem A. 2020 Sep 24;124(38):7827-7831. doi: 10.1021/acs.jpca.0c07172. Epub 2020 Sep 15.
5
Mechanism of Color and Photoacidity Tuning for the Protonated Green Fluorescent Protein Chromophore.
J Am Chem Soc. 2020 Jun 24;142(25):11032-11041. doi: 10.1021/jacs.0c02796. Epub 2020 Jun 9.
6
The Quest for Highly Accurate Excitation Energies: A Computational Perspective.
J Phys Chem Lett. 2020 Mar 19;11(6):2374-2383. doi: 10.1021/acs.jpclett.0c00014. Epub 2020 Mar 10.
7
Probing the Microsolvation Environment of the Green Fluorescent Protein Chromophore .
J Phys Chem Lett. 2020 Mar 5;11(5):1940-1946. doi: 10.1021/acs.jpclett.0c00105. Epub 2020 Feb 25.
8
Electrostatic control of photoisomerization pathways in proteins.
Science. 2020 Jan 3;367(6473):76-79. doi: 10.1126/science.aax1898.
10
Cryogenic Ion Spectroscopy of the Green Fluorescent Protein Chromophore in Vacuo.
J Phys Chem Lett. 2019 Dec 19;10(24):7817-7822. doi: 10.1021/acs.jpclett.9b02916. Epub 2019 Dec 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验