Suppr超能文献

质子化绿色荧光蛋白发色团的颜色和光酸可调谐机制。

Mechanism of Color and Photoacidity Tuning for the Protonated Green Fluorescent Protein Chromophore.

机构信息

Department of Chemistry, Stanford University, Stanford, California 94305, United States.

出版信息

J Am Chem Soc. 2020 Jun 24;142(25):11032-11041. doi: 10.1021/jacs.0c02796. Epub 2020 Jun 9.

Abstract

The neutral or A state of the green fluorescent protein (GFP) chromophore is a remarkable example of a photoacid naturally embedded in the protein environment and accounts for the large Stokes shift of GFP in response to near UV excitation. Its color tuning mechanism has been largely overlooked, as it is less preferred for imaging applications than the redder anionic or B state. Past studies, based on site-directed mutagenesis or solvatochromism of the isolated chromophore, have concluded that its color tuning range is much narrower than its anionic counterpart. However, as we performed extensive investigation on more GFP mutants, we found that the color of the neutral chromophore can be more sensitive to protein electrostatics than can the anionic counterpart. Electronic Stark spectroscopy reveals a fundamentally different electrostatic color tuning mechanism for the neutral state of the chromophore that demands a three-form model as compared to that of the anionic state, which requires only two forms ( 2019, 141, 15250-15265). Specifically, an underlying zwitterionic charge-transfer state is required to explain its sensitivity to electrostatics. As the Stokes shift is tightly linked to excited-state proton transfer (ESPT) of the protonated chromophore, we infer design principles of the GFP chromophore as a photoacid through the color tuning mechanisms of both protonation states. The three-form model could also be applied to similar biological and nonbiological dyes and complements the failure of the two-form model for donor-acceptor systems with localized ground-state electronic distributions.

摘要

绿色荧光蛋白(GFP)发色团的中性或 A 态是一个极好的例子,说明了天然嵌入蛋白质环境中的光酸,并解释了 GFP 在近紫外激发下产生大斯托克斯位移的原因。它的颜色调谐机制在很大程度上被忽视了,因为与阴离子或 B 态相比,它不太适合成像应用。过去的研究基于定点突变或分离发色团的溶剂变色,得出的结论是,它的颜色调谐范围比阴离子态窄得多。然而,当我们对更多 GFP 突变体进行广泛研究时,我们发现中性发色团的颜色比阴离子态对蛋白质静电更敏感。电子斯塔克光谱揭示了发色团中性态的基本不同的静电颜色调谐机制,与阴离子态相比,需要一个三态模型,而阴离子态仅需要两个态(2019 年,141,15250-15265)。具体来说,需要一个潜在的两性离子电荷转移态来解释它对静电的敏感性。由于斯托克斯位移与质子化发色团的激发态质子转移(ESPT)紧密相关,我们通过两种质子化状态的颜色调谐机制推断 GFP 发色团作为光酸的设计原则。三态模型也可以应用于类似的生物和非生物染料,并补充了具有局部基态电子分布的供体-受体体系中两态模型的失败。

相似文献

1
Mechanism of Color and Photoacidity Tuning for the Protonated Green Fluorescent Protein Chromophore.
J Am Chem Soc. 2020 Jun 24;142(25):11032-11041. doi: 10.1021/jacs.0c02796. Epub 2020 Jun 9.
2
Ultrafast proton shuttling in Psammocora cyan fluorescent protein.
J Phys Chem B. 2013 Sep 26;117(38):11134-43. doi: 10.1021/jp401114e. Epub 2013 Apr 19.
3
An alternate proton acceptor for excited-state proton transfer in green fluorescent protein: rewiring GFP.
J Am Chem Soc. 2008 Jan 30;130(4):1227-35. doi: 10.1021/ja0754507. Epub 2008 Jan 8.
4
Conformationally locked chromophores as models of excited-state proton transfer in fluorescent proteins.
J Am Chem Soc. 2012 Apr 4;134(13):6025-32. doi: 10.1021/ja3010144. Epub 2012 Mar 20.
5
Controlling Light-Induced Proton Transfer from the GFP Chromophore.
Chemphyschem. 2021 May 5;22(9):833-841. doi: 10.1002/cphc.202100068. Epub 2021 Mar 18.
7
On the optical absorption of the anionic GFP chromophore in vacuum, solution, and protein.
Phys Chem Chem Phys. 2013 Dec 21;15(47):20536-44. doi: 10.1039/c3cp52820k. Epub 2013 Nov 1.
10
Structural events in the photocycle of green fluorescent protein.
J Phys Chem B. 2005 Aug 25;109(33):16099-108. doi: 10.1021/jp051315+.

引用本文的文献

1
Engineering a Green Fluorescent Protein-Core-Inspired NIR-Photocage: Exploring -GFP-PRPG toward Alzheimer's Disease Therapeutics.
ACS Cent Sci. 2025 Mar 20;11(7):1062-1070. doi: 10.1021/acscentsci.5c00027. eCollection 2025 Jul 23.
2
Structural characterization of green fluorescent protein in the I-state.
Sci Rep. 2024 Oct 1;14(1):22832. doi: 10.1038/s41598-024-73696-y.
3
Delineating Ultrafast Structural Dynamics of a Green-Red Fluorescent Protein for Calcium Sensing.
Biosensors (Basel). 2023 Feb 2;13(2):218. doi: 10.3390/bios13020218.
4
Complexation of Green and Red Kaede Fluorescent Protein Chromophores by a Zwitterion to Probe Electrostatic and Induction Field Effects.
J Phys Chem A. 2022 Feb 24;126(7):1158-1167. doi: 10.1021/acs.jpca.1c10628. Epub 2022 Feb 9.
8
Unusual Spectroscopic and Electric Field Sensitivity of Chromophores with Short Hydrogen Bonds: GFP and PYP as Model Systems.
J Phys Chem B. 2020 Oct 29;124(43):9513-9525. doi: 10.1021/acs.jpcb.0c07730. Epub 2020 Oct 19.

本文引用的文献

1
Four resonance structures elucidate double-bond isomerisation of a biological chromophore.
Phys Chem Chem Phys. 2020 Apr 29;22(16):8535-8544. doi: 10.1039/d0cp00814a.
2
Devising Efficient Red-Shifting Strategies for Bioimaging: A Generalizable Donor-Acceptor Fluorophore Prototype.
Chem Asian J. 2020 May 15;15(10):1514-1523. doi: 10.1002/asia.202000175. Epub 2020 Apr 8.
4
Dual-Self-Restricted GFP Chromophore Analogues with Significantly Enhanced Emission.
J Phys Chem B. 2020 Feb 6;124(5):871-880. doi: 10.1021/acs.jpcb.9b11329. Epub 2020 Jan 22.
5
Electrostatic control of photoisomerization pathways in proteins.
Science. 2020 Jan 3;367(6473):76-79. doi: 10.1126/science.aax1898.
6
Direct Observation of the Protonation States in the Mutant Green Fluorescent Protein.
J Phys Chem Lett. 2020 Jan 16;11(2):492-496. doi: 10.1021/acs.jpclett.9b03252. Epub 2020 Jan 6.
7
Unified Model for Photophysical and Electro-Optical Properties of Green Fluorescent Proteins.
J Am Chem Soc. 2019 Sep 25;141(38):15250-15265. doi: 10.1021/jacs.9b07152. Epub 2019 Sep 11.
8
Subatomic resolution X-ray structures of green fluorescent protein.
IUCrJ. 2019 Apr 3;6(Pt 3):387-400. doi: 10.1107/S205225251900246X. eCollection 2019 May 1.
9
Photoinduced Proton Transfer of GFP-Inspired Fluorescent Superphotoacids: Principles and Design.
J Phys Chem B. 2019 May 2;123(17):3804-3821. doi: 10.1021/acs.jpcb.9b03201. Epub 2019 Apr 18.
10
Electronic State Mixing Controls the Photoreactivity of a Rhodopsin with all- trans Chromophore Analogues.
J Phys Chem Lett. 2018 Nov 1;9(21):6350-6355. doi: 10.1021/acs.jpclett.8b02550. Epub 2018 Oct 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验