Suppr超能文献

我们如何准确预测生色团的电致变色位移?以光合作用反应中心为例。

How Can We Predict Accurate Electrochromic Shifts for Biochromophores? A Case Study on the Photosynthetic Reaction Center.

机构信息

Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.

Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, 44780 Bochum, Germany.

出版信息

J Chem Theory Comput. 2021 Mar 9;17(3):1858-1873. doi: 10.1021/acs.jctc.0c01152. Epub 2021 Feb 10.

Abstract

Protein-embedded chromophores are responsible for light harvesting, excitation energy transfer, and charge separation in photosynthesis. A critical part of the photosynthetic apparatus are reaction centers (RCs), which comprise groups of (bacterio)chlorophyll and (bacterio)pheophytin molecules that transform the excitation energy derived from light absorption into charge separation. The lowest excitation energies of individual pigments (site energies) are key for understanding photosynthetic systems, and form a prime target for quantum chemistry. A major theoretical challenge is to accurately describe the electrochromic (Stark) shifts in site energies produced by the inhomogeneous electric field of the protein matrix. Here, we present large-scale quantum mechanics/molecular mechanics calculations of electrochromic shifts for the RC chromophores of photosystem II (PSII) using various quantum chemical methods evaluated against the domain-based local pair natural orbital (DLPNO) implementation of the similarity-transformed equation of motion coupled cluster theory with single and double excitations (STEOM-CCSD). We show that certain range-separated density functionals (ωΒ97, ωΒ97X-V, ωΒ2PLYP, and LC-BLYP) correctly reproduce RC site energy shifts with time-dependent density functional theory (TD-DFT). The popular CAM-B3LYP functional underestimates the shifts and is not recommended. Global hybrid functionals are too insensitive to the environment and should be avoided, while nonhybrid functionals are strictly nonapplicable. Among the applicable approximate coupled cluster methods, the canonical versions of CC2 and ADC(2) were found to deviate significantly from the reference results both for the description of the lowest excited state and for the electrochromic shifts. By contrast, their spin-component-scaled (SCS) and particularly the scale-opposite-spin (SOS) variants compare well with the reference DLPNO-STEOM-CCSD and the best range-separated DFT methods. The emergence of RC excitation asymmetry is discussed in terms of intrinsic and protein electrostatic potentials. In addition, we evaluate a minimal structural scaffold of PSII, the D1-D2-Cyt RC complex often employed in experimental studies, and show that it would have the same site energy distribution of RC chromophores as the full PSII supercomplex, but only under the unlikely conditions that the core protein organization and cofactor arrangement remain identical to those of the intact enzyme.

摘要

蛋白质嵌入的生色团负责光合作用中的光捕获、激发能量转移和电荷分离。光合作用装置的一个关键部分是反应中心 (RC),它由一组(细菌)叶绿素和(细菌)脱镁叶绿素分子组成,这些分子将光吸收产生的激发能量转化为电荷分离。单个色素的最低激发能(位置能)是理解光合作用系统的关键,也是量子化学的主要目标。一个主要的理论挑战是准确描述蛋白质基质不均匀电场产生的生色团的电致变色(斯塔克)位移。在这里,我们使用各种量子化学方法对光合系统 II (PSII) 的 RC 生色团进行了大规模的量子力学/分子力学电致变色位移计算,这些方法是针对基于域的局部对自然轨道 (DLPNO) 实现的相似变换运动方程耦合簇理论与单重和双重激发 (STEOM-CCSD) 进行评估的。我们表明,某些范围分离密度泛函 (ωΒ97、ωΒ97X-V、ωΒ2PLYP 和 LC-BLYP) 可以正确地用时间相关密度泛函理论 (TD-DFT) 重现 RC 位置能的位移。流行的 CAM-B3LYP 函数低估了位移,因此不推荐使用。全局杂化泛函对环境的敏感性太低,应避免使用,而非杂化泛函则严格不适用。在适用的近似耦合簇方法中,发现 CC2 和 ADC(2) 的规范版本在描述最低激发态和电致变色位移方面都与参考结果有很大偏差。相比之下,它们的自旋分量标度 (SCS) ,特别是相反自旋标度 (SOS) 变体与参考 DLPNO-STEOM-CCSD 和最佳范围分离 DFT 方法相比,效果很好。还讨论了 RC 激发不对称性出现的原因,包括内在和蛋白质静电势。此外,我们评估了 PSII 的最小结构支架,即经常用于实验研究的 D1-D2-Cyt RC 复合物,并表明它将具有与完整 PSII 超复合物相同的 RC 生色团位置能分布,但前提是核心蛋白质组织和辅助因子排列与完整酶相同。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3396/8023663/ae541e1c3ea0/ct0c01152_0002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验