Suppr超能文献

CRISPR 单碱基编辑、神经疾病建模和功能基因组学用于遗传变异分析:使用 Kleefstra 综合征 EHMT1 杂合不足进行管道验证。

CRISPR single base editing, neuronal disease modelling and functional genomics for genetic variant analysis: pipeline validation using Kleefstra syndrome EHMT1 haploinsufficiency.

机构信息

Translational Genetics, Precision Health, Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, 15 Hospital Avenue, Nedlands, WA, 6009, Australia.

Computational Biology, Precision Health, Telethon Kids Institute, Perth Children's Hospital, Nedlands, WA, 6009, Australia.

出版信息

Stem Cell Res Ther. 2022 Feb 9;13(1):69. doi: 10.1186/s13287-022-02740-3.

Abstract

BACKGROUND

Over 400 million people worldwide are living with a rare disease. Next Generation Sequencing (NGS) identifies potential disease causative genetic variants. However, many are identified as variants of uncertain significance (VUS) and require functional laboratory validation to determine pathogenicity, and this creates major diagnostic delays.

METHODS

In this study we test a rapid genetic variant assessment pipeline using CRISPR homology directed repair to introduce single nucleotide variants into inducible pluripotent stem cells (iPSCs), followed by neuronal disease modelling, and functional genomics on amplicon and RNA sequencing, to determine cellular changes to support patient diagnosis and identify disease mechanism.

RESULTS

As proof-of-principle, we investigated an EHMT1 (Euchromatin histone methyltransferase 1; EHMT1 c.3430C > T; p.Gln1144*) genetic variant pathogenic for Kleefstra syndrome and determined changes in gene expression during neuronal progenitor cell differentiation. This pipeline rapidly identified Kleefstra syndrome in genetic variant cells compared to healthy cells, and revealed novel findings potentially implicating the key transcription factors REST and SP1 in disease pathogenesis.

CONCLUSION

The study pipeline is a rapid, robust method for genetic variant assessment that will support rare diseases patient diagnosis. The results also provide valuable information on genome wide perturbations key to disease mechanism that can be targeted for drug treatments.

摘要

背景

全球有超过 4 亿人患有罕见病。下一代测序(NGS)可识别潜在的疾病致病遗传变异。然而,许多被鉴定为意义未明的变异(VUS),需要通过功能实验室验证来确定其致病性,这导致了主要的诊断延迟。

方法

在这项研究中,我们使用 CRISPR 同源定向修复技术测试了一种快速遗传变异评估管道,将单核苷酸变异引入诱导多能干细胞(iPSC)中,然后进行神经元疾病建模和扩增子及 RNA 测序的功能基因组学,以确定支持患者诊断和识别疾病机制的细胞变化。

结果

作为原理验证,我们研究了一种 EHMT1( euchromatin histone methyltransferase 1;EHMT1 c.3430C > T;p.Gln1144*)基因变异,该变异是克莱夫斯特综合征的致病因素,并确定了神经元祖细胞分化过程中基因表达的变化。与健康细胞相比,该管道在遗传变异细胞中快速鉴定出克莱夫斯特综合征,并揭示了潜在的新发现,可能涉及关键转录因子 REST 和 SP1 在疾病发病机制中的作用。

结论

该研究管道是一种快速、稳健的遗传变异评估方法,将支持罕见病患者的诊断。研究结果还提供了有关全基因组扰动的有价值信息,这些信息对于疾病机制的关键靶点治疗药物具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dcd/8827184/34c41b0a3fe5/13287_2022_2740_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验