Department of Surgery, Yonsei University College of Medicine, Seoul, South Korea.
Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, South Korea.
Nat Commun. 2022 Feb 9;13(1):774. doi: 10.1038/s41467-022-28437-y.
Genomic profiling can provide prognostic and predictive information to guide clinical care. Biomarkers that reliably predict patient response to chemotherapy and immune checkpoint inhibition in gastric cancer are lacking. In this retrospective analysis, we use our machine learning algorithm NTriPath to identify a gastric-cancer specific 32-gene signature. Using unsupervised clustering on expression levels of these 32 genes in tumors from 567 patients, we identify four molecular subtypes that are prognostic for survival. We then built a support vector machine with linear kernel to generate a risk score that is prognostic for five-year overall survival and validate the risk score using three independent datasets. We also find that the molecular subtypes predict response to adjuvant 5-fluorouracil and platinum therapy after gastrectomy and to immune checkpoint inhibitors in patients with metastatic or recurrent disease. In sum, we show that the 32-gene signature is a promising prognostic and predictive biomarker to guide the clinical care of gastric cancer patients and should be validated using large patient cohorts in a prospective manner.
基因组分析可以提供预后和预测信息,以指导临床治疗。目前缺乏可靠预测胃癌患者对化疗和免疫检查点抑制反应的生物标志物。在这项回顾性分析中,我们使用机器学习算法 NTriPath 来识别一种胃癌特异性的 32 基因特征。我们对 567 名患者肿瘤中这 32 个基因的表达水平进行无监督聚类,确定了 4 个与生存相关的分子亚型。然后,我们构建了一个带有线性核的支持向量机,生成一个用于预测五年总生存率的风险评分,并使用三个独立数据集进行验证。我们还发现,分子亚型可以预测辅助氟尿嘧啶和铂类治疗后胃切除术后的反应,以及转移性或复发性疾病患者对免疫检查点抑制剂的反应。总之,我们表明,32 基因特征是一种很有前途的预后和预测生物标志物,可以指导胃癌患者的临床治疗,并且应该前瞻性地使用大型患者队列进行验证。