Suppr超能文献

分析结直肠癌中的大规模基因表达数据揭示了重要线索;CLCA1和SELENBP1在结直肠癌中下调,而在正常组织和腺瘤中未下调。

Analyzing large scale gene expression data in colorectal cancer reveals important clues; CLCA1 and SELENBP1 downregulated in CRC not in normal and not in adenoma.

作者信息

Asghari Alashti Fariborz, Goliaei Bahram, Minuchehr Zarrin

机构信息

Institute of Biochemistry and Biophysics (IBB), University of Tehran Tehran, Iran.

Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Department of Laboratory Medicine and Pathobiology, University of Toronto Ontario, Canada.

出版信息

Am J Cancer Res. 2022 Jan 15;12(1):371-380. eCollection 2022.

Abstract

Early detection of colorectal cancer (CRC) increases the chances of survival and reduces the therapeutic problems and costs of treatment. Since molecular biomarkers can help us diagnose colorectal cancer early, we need to identify novel gene for predicting the early stages of tumorigenesis. Here, we integrated five independent CRC gene expression datasets derived from expression profiling by array comparing CRC with normal samples in: GSE21510, GSE4107, GSE25071, GSE15781 dataset, and GSE8671 dataset, including 64 samples from 32 patients comparing 32 colonic normal mucosa with 32 colorectal adenoma. To detect genes that expressed differentially in experimental circumstances of these datasets, we used web tool of GEO2R to compare groups of samples in the GEO data series. Furthermore, we constructed the protein-protein interactions network by STRING database for mostly downregulated genes and the expression of their members in PPI network were studied into five datasets separately. Also, the level of expression of selected biomarker genes in different stages of CRC compared to normal was studied. Our data revealed 17 common downregulated genes (average fold change (FC) in five tests ≥6) in CRC in comparison with normal (Test 1 to Test 4) and in adenoma compared with normal (Test 5). Studying of gene expression of PPI network members of these downregulated genes led to identifying of CLCA1, SELENBP1, CWC25, ACOT11, GUCY2C and ALDH1A1 as suppressor genes and PTGS2, PROCR, MOCS3 and NFS1 as oncogenes which respectively downregulated and upregulated in CRC. Since decreasing of gene expression was seen in CRC comparing with normal and due to no different expression seen for these 10 genes in adenoma, they, especially CLCA1 and SELENBP1, could be considered as biomarkers for early detection of CRC. Before using these signature genes in the clinic; however, further validations are required.

摘要

早期检测结直肠癌(CRC)可提高生存率,减少治疗问题和治疗成本。由于分子生物标志物有助于我们早期诊断结直肠癌,因此我们需要鉴定预测肿瘤发生早期阶段的新基因。在此,我们整合了五个独立的CRC基因表达数据集,这些数据集来自通过阵列进行的表达谱分析,将CRC与正常样本在以下数据集中进行比较:GSE21510、GSE4107、GSE25071、GSE15781数据集和GSE8671数据集,包括来自32名患者的64个样本,将32份结肠正常黏膜与32份结肠直肠腺瘤进行比较。为了检测在这些数据集的实验情况下差异表达的基因,我们使用GEO2R网络工具比较GEO数据系列中的样本组。此外,我们通过STRING数据库构建了主要下调基因的蛋白质-蛋白质相互作用网络,并分别在五个数据集中研究了它们在PPI网络中的成员表达。此外,还研究了与正常相比,所选生物标志物基因在CRC不同阶段的表达水平。我们的数据显示,与正常相比(测试1至测试4)以及与腺瘤相比(测试5),CRC中有17个共同下调基因(五次测试中的平均倍数变化(FC)≥6)。对这些下调基因的PPI网络成员的基因表达进行研究,导致鉴定出CLCA1、SELENBP1、CWC25、ACOT11、GUCY2C和ALDH1A1为抑制基因,PTGS2、PROCR、MOCS3和NFS1为癌基因,它们在CRC中分别下调和上调。由于与正常相比,CRC中基因表达下降,并且由于这10个基因在腺瘤中未观察到不同表达,因此它们,尤其是CLCA1和SELENBP1,可被视为早期检测CRC的生物标志物。然而,在临床使用这些特征基因之前,还需要进一步验证。

相似文献

4
Identification of key genes for predicting colorectal cancer prognosis by integrated bioinformatics analysis.
Oncol Lett. 2020 Jan;19(1):388-398. doi: 10.3892/ol.2019.11068. Epub 2019 Nov 7.
5
Aging related methylation influences the gene expression of key control genes in colorectal cancer and adenoma.
World J Gastroenterol. 2016 Dec 21;22(47):10325-10340. doi: 10.3748/wjg.v22.i47.10325.
7
Differential Expression Analysis Revealing CLCA1 to Be a Prognostic and Diagnostic Biomarker for Colorectal Cancer.
Front Oncol. 2020 Oct 28;10:573295. doi: 10.3389/fonc.2020.573295. eCollection 2020.
9
Integrated Analysis of Oncogenic Networks in Colorectal Cancer Identifies GUCA2A as a Molecular Marker.
Biochem Res Int. 2019 Jul 28;2019:6469420. doi: 10.1155/2019/6469420. eCollection 2019.
10

引用本文的文献

2
Identification of Novel lncRNAs Related to Colorectal Cancer Through Bioinformatics Analysis.
Biomed Res Int. 2025 Jan 29;2025:5538575. doi: 10.1155/bmri/5538575. eCollection 2025.
3
Innovative strategies to optimise colorectal cancer immunotherapy through molecular mechanism insights.
Front Immunol. 2024 Dec 9;15:1509658. doi: 10.3389/fimmu.2024.1509658. eCollection 2024.
5
Progress of the acyl-Coenzyme A thioester hydrolase family in cancer.
Front Oncol. 2024 Mar 18;14:1374094. doi: 10.3389/fonc.2024.1374094. eCollection 2024.
6
Guanylate cyclase-C Signaling Axis as a theragnostic target in colorectal cancer: a systematic review of literature.
Front Oncol. 2023 Oct 20;13:1277265. doi: 10.3389/fonc.2023.1277265. eCollection 2023.

本文引用的文献

1
Identification of the prognostic value of elevated ANGPTL4 expression in gallbladder cancer-associated fibroblasts.
Cancer Med. 2021 Sep;10(17):6035-6047. doi: 10.1002/cam4.4150. Epub 2021 Jul 31.
2
Over-Expression: A Colorectal Carcinoma Initiator not an Invasive Factor.
Rep Biochem Mol Biol. 2021 Jan;9(4):442-451. doi: 10.52547/rbmb.9.4.442.
3
Downregulation of CLCA4 expression is associated with the development and progression of colorectal cancer.
Oncol Lett. 2020 Jul;20(1):631-638. doi: 10.3892/ol.2020.11640. Epub 2020 May 18.
4
Colorectal cancer statistics, 2020.
CA Cancer J Clin. 2020 May;70(3):145-164. doi: 10.3322/caac.21601. Epub 2020 Mar 5.
5
Four targeted genes for predicting the prognosis of colorectal cancer: A bioinformatics analysis case.
Oncol Lett. 2019 Nov;18(5):5043-5054. doi: 10.3892/ol.2019.10866. Epub 2019 Sep 13.
6
Genome-Wide Profiling of Prognostic Alternative Splicing Signature in Colorectal Cancer.
Front Oncol. 2018 Nov 20;8:537. doi: 10.3389/fonc.2018.00537. eCollection 2018.
9
Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.
CA Cancer J Clin. 2018 Nov;68(6):394-424. doi: 10.3322/caac.21492. Epub 2018 Sep 12.
10
Discovering cellular protein-protein interactions: Technological strategies and opportunities.
Mass Spectrom Rev. 2019 Jan;38(1):79-111. doi: 10.1002/mas.21574. Epub 2018 Jun 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验