文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

人工耳蜗以及缩小假体听力与正常听力之间剩余差距的可能性。

The cochlear implant and possibilities for narrowing the remaining gaps between prosthetic and normal hearing.

作者信息

Wilson Blake S

机构信息

Department of Surgery, Duke University School of Medicine, Durham, NC, USA.

Department of Biomedical Engineering, Duke University, Durham, NC, USA.

出版信息

World J Otorhinolaryngol Head Neck Surg. 2018 Jan 3;3(4):200-210. doi: 10.1016/j.wjorl.2017.12.005. eCollection 2017 Dec.


DOI:10.1016/j.wjorl.2017.12.005
PMID:29780963
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5956133/
Abstract

BACKGROUND: The cochlear implant has become the standard of care for severe or worse losses in hearing and indeed has produced the first substantial restoration of a lost or absent human sense using a medical intervention. However, the devices are not perfect and many efforts to narrow the remaining gaps between prosthetic and normal hearing are underway. OBJECTIVE: To assess the present status of cochlear implants and to describe possibilities for improving them. RESULTS: The present-day devices work well in quiet conditions for the great majority of users. However, not all users have high levels of speech reception in quiet and nearly all users struggle with speech reception in typically noisy acoustic environments. In addition, perception of sounds more complex than speech, such as most music, is generally poor unless residual hearing at low frequencies can be stimulated acoustically in conjunction with the electrical stimuli provided by the implant. Possibilities for improving the present devices include increasing the spatial specificity of neural excitation by reducing masking effects or with new stimulus modes; prudent pruning of interfering or otherwise detrimental electrodes from the stimulation map; a further relaxation in the criteria for implant candidacy, based on recent evidence from persons with high levels of residual hearing and to allow many more people to benefit from cochlear implants; and "top down" or "brain centric" approaches to implant designs and applications. CONCLUSIONS: Progress in the development of the cochlear implant and related treatments has been remarkable but room remains for improvements. The future looks bright as there are multiple promising possibilities for improvements and many talented teams are pursuing them.

摘要

背景:人工耳蜗已成为重度或更严重听力损失的标准治疗手段,并且确实首次通过医学干预实质性地恢复了丧失或缺失的人类感官。然而,这些设备并不完美,目前正在进行许多努力以缩小人工耳蜗与正常听力之间的差距。 目的:评估人工耳蜗的现状并描述改进它们的可能性。 结果:当今的设备在安静环境中对大多数使用者效果良好。然而,并非所有使用者在安静环境下都有高水平的言语接受能力,并且几乎所有使用者在典型的嘈杂声学环境中都难以进行言语接受。此外,对于比言语更复杂的声音感知,例如大多数音乐,通常很差,除非低频残余听力能够与植入物提供的电刺激一起通过声学方式被刺激。改进现有设备的可能性包括通过减少掩蔽效应或采用新的刺激模式来提高神经兴奋的空间特异性;从刺激图谱中谨慎去除干扰性或其他有害电极;根据近期对具有高水平残余听力者的研究证据,进一步放宽植入候选标准,以使更多人能够受益于人工耳蜗;以及采用“自上而下”或“以大脑为中心”的方法进行植入物设计和应用。 结论:人工耳蜗及相关治疗的发展取得了显著进展,但仍有改进空间。未来前景光明,因为有多种有前景的改进可能性,并且许多有才华的团队正在致力于此。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a375/5956133/5ea539c14c56/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a375/5956133/bcc41a373d7a/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a375/5956133/194bb8c4e492/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a375/5956133/66bb71ead1cd/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a375/5956133/a04df2c4d937/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a375/5956133/11d939989df7/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a375/5956133/50c105ceae1b/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a375/5956133/0d8f0a58fb49/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a375/5956133/ec8288eeed03/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a375/5956133/d7520d179d5c/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a375/5956133/5ea539c14c56/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a375/5956133/bcc41a373d7a/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a375/5956133/194bb8c4e492/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a375/5956133/66bb71ead1cd/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a375/5956133/a04df2c4d937/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a375/5956133/11d939989df7/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a375/5956133/50c105ceae1b/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a375/5956133/0d8f0a58fb49/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a375/5956133/ec8288eeed03/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a375/5956133/d7520d179d5c/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a375/5956133/5ea539c14c56/gr10.jpg

相似文献

[1]
The cochlear implant and possibilities for narrowing the remaining gaps between prosthetic and normal hearing.

World J Otorhinolaryngol Head Neck Surg. 2018-1-3

[2]
Music perception with cochlear implants: a review.

Trends Amplif. 2004

[3]
Sound localization in noise by normal-hearing listeners and cochlear implant users.

Ear Hear. 2012

[4]
Auditory Performance and Electrical Stimulation Measures in Cochlear Implant Recipients With Auditory Neuropathy Compared With Severe to Profound Sensorineural Hearing Loss.

Ear Hear. 2017

[5]
Masking release with changing fundamental frequency: Electric acoustic stimulation resembles normal hearing subjects.

Hear Res. 2017-7

[6]
Spatial Release From Masking in Simulated Cochlear Implant Users With and Without Access to Low-Frequency Acoustic Hearing.

Trends Hear. 2015-12-30

[7]
The benefits of remote microphone technology for adults with cochlear implants.

Ear Hear. 2009-10

[8]
Trimodal speech perception: how residual acoustic hearing supplements cochlear-implant consonant recognition in the presence of visual cues.

Ear Hear. 2015

[9]
Comparison of bimodal and bilateral cochlear implant users on speech recognition with competing talker, music perception, affective prosody discrimination, and talker identification.

Ear Hear. 2011-2

[10]
A physiologically-inspired model reproducing the speech intelligibility benefit in cochlear implant listeners with residual acoustic hearing.

Hear Res. 2017-2

引用本文的文献

[1]
Improving Control of Gene Therapy-Based Neurotrophin Delivery for Inner Ear Applications.

Front Bioeng Biotechnol. 2022-6-3

[2]
Impacts of signal processing factors on perceptual restoration in cochlear-implant users.

J Acoust Soc Am. 2022-5

[3]
The medical cyborg concept.

EMBnet J. 2022-4

[4]
Development of Neuronal Guidance Fibers for Stimulating Electrodes: Basic Construction and Delivery of a Growth Factor.

Front Bioeng Biotechnol. 2022-1-24

[5]
Electro-Haptic Stimulation: A New Approach for Improving Cochlear-Implant Listening.

Front Neurosci. 2021-6-9

[6]
Guidelines for Best Practice in the Audiological Management of Adults with Severe and Profound Hearing Loss.

Semin Hear. 2020-8

[7]
Speech-in-Noise Recognition With More Realistic Implementations of a Binaural Cochlear-Implant Sound Coding Strategy Inspired by the Medial Olivocochlear Reflex.

Ear Hear. 2020

本文引用的文献

[1]
NANOCI-Nanotechnology Based Cochlear Implant With Gapless Interface to Auditory Neurons.

Otol Neurotol. 2017-9

[2]
The Advances in Hearing Rehabilitation and Cochlear Implants in China.

Ear Hear. 2017

[3]
Sound Source Localization by Normal-Hearing Listeners, Hearing-Impaired Listeners and Cochlear Implant Listeners.

Audiol Neurootol. 2016

[4]
Neurocognitive factors in sensory restoration of early deafness: a connectome model.

Lancet Neurol. 2016-5

[5]
Initial Results With Image-guided Cochlear Implant Programming in Children.

Otol Neurotol. 2016-2

[6]
Results of Postoperative, CT-based, Electrode Deactivation on Hearing in Prelingually Deafened Adult Cochlear Implant Recipients.

Otol Neurotol. 2016-2

[7]
A Within-Subject Comparison of Bimodal Hearing, Bilateral Cochlear Implantation, and Bilateral Cochlear Implantation With Bilateral Hearing Preservation: High-Performing Patients.

Otol Neurotol. 2015-9

[8]
Considering optogenetic stimulation for cochlear implants.

Hear Res. 2015-4

[9]
Getting a decent (but sparse) signal to the brain for users of cochlear implants.

Hear Res. 2015-4

[10]
Clinical evaluation of an image-guided cochlear implant programming strategy.

Audiol Neurootol. 2014

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索