Suppr超能文献

基于唾液的 COVID-19 感染的无试剂拉曼光谱和机器学习的现实环境检测。

Saliva-based detection of COVID-19 infection in a real-world setting using reagent-free Raman spectroscopy and machine learning.

机构信息

Polytechnique Montréal, Montreal, Canada.

Center de recherche du Center hospitalier de l'Université de Montréal, Montreal, Canada.

出版信息

J Biomed Opt. 2022 Feb;27(2). doi: 10.1117/1.JBO.27.2.025002.

Abstract

SIGNIFICANCE

The primary method of COVID-19 detection is reverse transcription polymerase chain reaction (RT-PCR) testing. PCR test sensitivity may decrease as more variants of concern arise and reagents may become less specific to the virus.

AIM

We aimed to develop a reagent-free way to detect COVID-19 in a real-world setting with minimal constraints on sample acquisition. The machine learning (ML) models involved could be frequently updated to include spectral information about variants without needing to develop new reagents.

APPROACH

We present a workflow for collecting, preparing, and imaging dried saliva supernatant droplets using a non-invasive, label-free technique-Raman spectroscopy-to detect changes in the molecular profile of saliva associated with COVID-19 infection.

RESULTS

We used an innovative multiple instance learning-based ML approach and droplet segmentation to analyze droplets. Amongst all confounding factors, we discriminated between COVID-positive and COVID-negative individuals yielding receiver operating coefficient curves with an area under curve (AUC) of 0.8 in both males (79% sensitivity and 75% specificity) and females (84% sensitivity and 64% specificity). Taking the sex of the saliva donor into account increased the AUC by 5%.

CONCLUSION

These findings may pave the way for new rapid Raman spectroscopic screening tools for COVID-19 and other infectious diseases.

摘要

意义

COVID-19 的主要检测方法是逆转录聚合酶链反应(RT-PCR)检测。随着更多关注的变体的出现,PCR 测试的灵敏度可能会降低,并且试剂可能对病毒的特异性降低。

目的

我们旨在开发一种在真实环境中无需试剂即可检测 COVID-19 的方法,并且对样本采集的限制最小。所涉及的机器学习(ML)模型可以频繁更新,以包括有关变体的光谱信息,而无需开发新的试剂。

方法

我们提出了一种使用非侵入性、无标记技术 - 拉曼光谱学 - 收集、准备和成像干燥唾液上清液液滴的工作流程,以检测与 COVID-19 感染相关的唾液分子特征的变化。

结果

我们使用了一种创新的基于多实例学习的 ML 方法和液滴分割来分析液滴。在所有混杂因素中,我们区分了 COVID-阳性和 COVID-阴性个体,在男性(79%的敏感性和 75%的特异性)和女性(84%的敏感性和 64%的特异性)中产生了具有曲线下面积(AUC)为 0.8 的接收者操作特征曲线。考虑到唾液供体的性别,AUC 增加了 5%。

结论

这些发现可能为 COVID-19 和其他传染病的新型快速拉曼光谱筛选工具铺平道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a3d1/8825664/89d2abf0528f/JBO-027-025002-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验