文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用拉曼光谱系统进行原位脑肿瘤检测——一项多中心研究结果。

In situ brain tumor detection using a Raman spectroscopy system-results of a multicenter study.

机构信息

Polytechnique Montréal, Montreal, Canada.

Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Canada.

出版信息

Sci Rep. 2024 Jun 10;14(1):13309. doi: 10.1038/s41598-024-62543-9.


DOI:10.1038/s41598-024-62543-9
PMID:38858389
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11164901/
Abstract

Safe and effective brain tumor surgery aims to remove tumor tissue, not non-tumoral brain. This is a challenge since tumor cells are often not visually distinguishable from peritumoral brain during surgery. To address this, we conducted a multicenter study testing whether the Sentry System could distinguish the three most common types of brain tumors from brain tissue in a label-free manner. The Sentry System is a new real time, in situ brain tumor detection device that merges Raman spectroscopy with machine learning tissue classifiers. Nine hundred and seventy-six in situ spectroscopy measurements and colocalized tissue specimens were acquired from 67 patients undergoing surgery for glioblastoma, brain metastases, or meningioma to assess tumor classification. The device achieved diagnostic accuracies of 91% for glioblastoma, 97% for brain metastases, and 96% for meningiomas. These data show that the Sentry System discriminated tumor containing tissue from non-tumoral brain in real time and prior to resection.

摘要

安全有效的脑瘤手术旨在切除肿瘤组织,而非非肿瘤性脑组织。这是一项挑战,因为在手术过程中,肿瘤细胞通常与肿瘤周围的脑组织无法通过肉眼区分。为了解决这个问题,我们进行了一项多中心研究,测试 Sentry 系统是否可以以无标记的方式区分三种最常见的脑肿瘤与脑组织。Sentry 系统是一种新的实时原位脑肿瘤检测设备,它将拉曼光谱与机器学习组织分类器相结合。从 67 名接受胶质母细胞瘤、脑转移瘤或脑膜瘤手术的患者中获得了 976 次原位光谱测量和共定位组织标本,以评估肿瘤分类。该设备对胶质母细胞瘤的诊断准确率为 91%,对脑转移瘤的诊断准确率为 97%,对脑膜瘤的诊断准确率为 96%。这些数据表明,Sentry 系统可以实时区分包含肿瘤的组织与非肿瘤性脑组织,且在切除之前即可完成。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/876b/11164901/0a9f1b1012b1/41598_2024_62543_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/876b/11164901/90c0cbba5e69/41598_2024_62543_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/876b/11164901/a78ffcd76f98/41598_2024_62543_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/876b/11164901/017e6b7b1a1b/41598_2024_62543_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/876b/11164901/c74f45d76cf5/41598_2024_62543_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/876b/11164901/0a9f1b1012b1/41598_2024_62543_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/876b/11164901/90c0cbba5e69/41598_2024_62543_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/876b/11164901/a78ffcd76f98/41598_2024_62543_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/876b/11164901/017e6b7b1a1b/41598_2024_62543_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/876b/11164901/c74f45d76cf5/41598_2024_62543_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/876b/11164901/0a9f1b1012b1/41598_2024_62543_Fig5_HTML.jpg

相似文献

[1]
In situ brain tumor detection using a Raman spectroscopy system-results of a multicenter study.

Sci Rep. 2024-6-10

[2]
FT-Raman spectra in combination with machine learning and multivariate analyses as a diagnostic tool in brain tumors.

Nanomedicine. 2024-4

[3]
Discriminating vital tumor from necrotic tissue in human glioblastoma tissue samples by Raman spectroscopy.

Lab Invest. 2002-10

[4]
Optimizing maximum resection of glioblastoma: Raman spectroscopy versus 5-aminolevulinic acid.

J Neurosurg. 2023-8-1

[5]
Rapid, label-free detection of brain tumors with stimulated Raman scattering microscopy.

Sci Transl Med. 2013-9-4

[6]
Raman and FTIR spectroscopy in determining the chemical changes in healthy brain tissues and glioblastoma tumor tissues.

Spectrochim Acta A Mol Biomol Spectrosc. 2019-9-10

[7]
Optical spectroscopic methods for intraoperative diagnosis.

Anal Bioanal Chem. 2014-1

[8]
Histochemical study of alkaline phosphatase in primary human brain tumors: diagnostic implications for meningiomas and neurinomas.

Neurosurgery. 1993-2

[9]
Optical biopsy identification and grading of gliomas using label-free visible resonance Raman spectroscopy.

J Biomed Opt. 2019-9

[10]
Combination of single-voxel proton MR spectroscopy and apparent diffusion coefficient calculation in the evaluation of common brain tumors.

AJNR Am J Neuroradiol. 2003-2

引用本文的文献

[1]
Challenges and opportunities for new intraoperative optical techniques in the surgical treatment of pituitary adenomas: a review.

J Biomed Opt. 2025-8

[2]
Development of a rapid and novel diagnostic technique for cardiac amyloidosis using Raman spectroscopy.

Res Sq. 2025-6-25

[3]
Development and preclinical evaluation of an endonasal Raman spectroscopy probe for transsphenoidal pituitary adenoma surgery.

J Biomed Opt. 2025-3

[4]
Intraoperative use of high-speed Raman spectroscopy during soft tissue sarcoma resection.

Sci Rep. 2025-3-14

[5]
Preliminary study demonstrating cancer cells detection at the margins of whole glioblastoma specimens with Raman spectroscopy imaging.

Sci Rep. 2025-2-22

[6]
Quantitative assessment of the generalizability of a brain tumor Raman spectroscopy machine learning model to various tumor types including astrocytoma and oligodendroglioma.

J Biomed Opt. 2025-1

[7]
Cancer neuroscience and glioma: clinical implications.

Acta Neurochir (Wien). 2025-1-3

[8]
Editorial: Advancements in intraoperative optical technologies for neurosurgery guidance.

Front Neurosci. 2024-12-4

[9]
Raman and autofluorescence spectroscopy for in situ identification of neoplastic tissue during surgical treatment of brain tumors.

J Neurooncol. 2024-12

本文引用的文献

[1]
Raman spectroscopy and machine learning unveil biomolecular alterations in invasive breast cancer.

J Biomed Opt. 2023-3

[2]
Open-sourced Raman spectroscopy data processing package implementing a baseline removal algorithm validated from multiple datasets acquired in human tissue and biofluids.

J Biomed Opt. 2023-2

[3]
Image-guided Raman spectroscopy navigation system to improve transperineal prostate cancer detection. Part 1: Raman spectroscopy fiber-optics system and in situ tissue characterization.

J Biomed Opt. 2022-9

[4]
Saliva-based detection of COVID-19 infection in a real-world setting using reagent-free Raman spectroscopy and machine learning.

J Biomed Opt. 2022-2

[5]
Multispectral label-free Raman spectroscopy can detect ovarian and endometrial cancer with high accuracy.

J Biophotonics. 2022-2

[6]
Dimensional reduction based on peak fitting of Raman micro spectroscopy data improves detection of prostate cancer in tissue specimens.

J Biomed Opt. 2021-11

[7]
Extracellular matrix in glioblastoma: opportunities for emerging therapeutic approaches.

Am J Cancer Res. 2021-8-15

[8]
Use of Raman spectroscopy to evaluate the biochemical composition of normal and tumoral human brain tissues for diagnosis.

Lasers Med Sci. 2022-2

[9]
Experimental validation of a spectroscopic Monte Carlo light transport simulation technique and Raman scattering depth sensing analysis in biological tissue.

J Biomed Opt. 2020-10

[10]
Identification of intraductal carcinoma of the prostate on tissue specimens using Raman micro-spectroscopy: A diagnostic accuracy case-control study with multicohort validation.

PLoS Med. 2020-8-14

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索