Polytechnique Montréal, Montreal, Canada.
Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Canada.
Sci Rep. 2024 Jun 10;14(1):13309. doi: 10.1038/s41598-024-62543-9.
Safe and effective brain tumor surgery aims to remove tumor tissue, not non-tumoral brain. This is a challenge since tumor cells are often not visually distinguishable from peritumoral brain during surgery. To address this, we conducted a multicenter study testing whether the Sentry System could distinguish the three most common types of brain tumors from brain tissue in a label-free manner. The Sentry System is a new real time, in situ brain tumor detection device that merges Raman spectroscopy with machine learning tissue classifiers. Nine hundred and seventy-six in situ spectroscopy measurements and colocalized tissue specimens were acquired from 67 patients undergoing surgery for glioblastoma, brain metastases, or meningioma to assess tumor classification. The device achieved diagnostic accuracies of 91% for glioblastoma, 97% for brain metastases, and 96% for meningiomas. These data show that the Sentry System discriminated tumor containing tissue from non-tumoral brain in real time and prior to resection.
安全有效的脑瘤手术旨在切除肿瘤组织,而非非肿瘤性脑组织。这是一项挑战,因为在手术过程中,肿瘤细胞通常与肿瘤周围的脑组织无法通过肉眼区分。为了解决这个问题,我们进行了一项多中心研究,测试 Sentry 系统是否可以以无标记的方式区分三种最常见的脑肿瘤与脑组织。Sentry 系统是一种新的实时原位脑肿瘤检测设备,它将拉曼光谱与机器学习组织分类器相结合。从 67 名接受胶质母细胞瘤、脑转移瘤或脑膜瘤手术的患者中获得了 976 次原位光谱测量和共定位组织标本,以评估肿瘤分类。该设备对胶质母细胞瘤的诊断准确率为 91%,对脑转移瘤的诊断准确率为 97%,对脑膜瘤的诊断准确率为 96%。这些数据表明,Sentry 系统可以实时区分包含肿瘤的组织与非肿瘤性脑组织,且在切除之前即可完成。
Sci Transl Med. 2013-9-4
Spectrochim Acta A Mol Biomol Spectrosc. 2019-9-10
Anal Bioanal Chem. 2014-1
Acta Neurochir (Wien). 2025-1-3
Front Neurosci. 2024-12-4
Am J Cancer Res. 2021-8-15