Suppr超能文献

利用谷歌趋势预测 COVID-19 检测量:一个拥有超过 1000 万次诊断检测的中低收入国家的经验。

Forecasting COVID-19 Testing Load Using Google Trends: Experience from a Lower Middle-Income Country with over 10 Million Diagnostic Tests.

出版信息

Clin Lab. 2022 Feb 1;68(2). doi: 10.7754/Clin.Lab.2021.210613.

Abstract

BACKGROUND

The ability to forecast changing trends of COVID-19 can help drive efforts to sustain the increasing burden on the healthcare system, specifically the clinical laboratories. We aimed to assess whether the trends of SARS-CoV-2 testing in Pakistan can be predicted using COVID-19 symptoms as search terms and analyzing the data from Google Trends.

METHODS

The number of weekly SARS-CoV-2 tests performed were retrieved from online COVID-19 data resource. Google Trends data for the search terms with most common COVID-19 symptoms was analyzed for cross-correlation with the number of tests performed nationally.

RESULTS

A total of 10,066,255 SARS-CoV-2 diagnostic tests were analyzed. Search terms of fever, headache, and shortness of breath displayed a statistically significant correlation with total number of tests performed with a 1-week time lag.

CONCLUSIONS

Google Trends data can be used to forecast the changing trends in COVID-19 testing. This information can be used for careful planning and arrangements to meet increased diagnostic and healthcare demands in difficult times.

摘要

背景

预测 COVID-19 变化趋势的能力有助于推动应对不断增加的医疗系统负担的工作,特别是临床实验室。我们旨在评估使用 COVID-19 症状作为搜索词并分析来自 Google Trends 的数据,是否可以预测巴基斯坦的 SARS-CoV-2 检测趋势。

方法

从在线 COVID-19 数据资源中检索每周进行的 SARS-CoV-2 检测数量。分析最常见 COVID-19 症状的搜索词的 Google Trends 数据,以与全国进行的检测数量进行交叉相关分析。

结果

共分析了 10,066,255 次 SARS-CoV-2 诊断检测。发热、头痛和呼吸急促等搜索词与 1 周滞后的总检测数量呈显著相关。

结论

Google Trends 数据可用于预测 COVID-19 检测的变化趋势。这些信息可用于在困难时期进行仔细的规划和安排,以满足增加的诊断和医疗需求。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验