Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Anatomy and Neurosciences, Amsterdam UMC, De Boelelaan 1117, Amsterdam, The Netherlands.
Institut Des Maladies Neurodégénératives, UMR 5293, Université de Bordeaux, CNRS, Bordeaux Neurocampus, 146 Rue Léo Saignat, 33000, Bordeaux, France.
Brain Struct Funct. 2022 Apr;227(3):741-762. doi: 10.1007/s00429-021-02435-0. Epub 2022 Feb 10.
The brain is an extraordinarily complex system that facilitates the optimal integration of information from different regions to execute its functions. With the recent advances in technology, researchers can now collect enormous amounts of data from the brain using neuroimaging at different scales and from numerous modalities. With that comes the need for sophisticated tools for analysis. The field of network neuroscience has been trying to tackle these challenges, and graph theory has been one of its essential branches through the investigation of brain networks. Recently, topological data analysis has gained more attention as an alternative framework by providing a set of metrics that go beyond pairwise connections and offer improved robustness against noise. In this hands-on tutorial, our goal is to provide the computational tools to explore neuroimaging data using these frameworks and to facilitate their accessibility, data visualisation, and comprehension for newcomers to the field. We will start by giving a concise (and by no means complete) overview of the field to introduce the two frameworks and then explain how to compute both well-established and newer metrics on resting-state functional magnetic resonance imaging. We use an open-source language (Python) and provide an accompanying publicly available Jupyter Notebook that uses the 1000 Functional Connectomes Project dataset. Moreover, we would like to highlight one part of our notebook dedicated to the realistic visualisation of high order interactions in brain networks. This pipeline provides three-dimensional (3-D) plots of pairwise and higher-order interactions projected in a brain atlas, a new feature tailor-made for network neuroscience.
大脑是一个极其复杂的系统,它促进了来自不同区域的信息的最佳整合,以执行其功能。随着技术的最新进展,研究人员现在可以使用神经影像学在不同的尺度和多种模式下从大脑中收集大量的数据。随之而来的是对复杂分析工具的需求。网络神经科学领域一直在努力应对这些挑战,而图论一直是其重要分支之一,通过研究大脑网络来解决这些问题。最近,拓扑数据分析作为一种替代框架得到了更多的关注,它提供了一组超越两两连接的度量标准,并提高了对噪声的鲁棒性。在这个实践教程中,我们的目标是提供使用这些框架探索神经影像学数据的计算工具,并为该领域的新手提供对它们的可访问性、数据可视化和理解。我们将首先简要(而且绝不是完整的)概述该领域,介绍这两个框架,然后解释如何计算静息态功能磁共振成像的既定和较新的指标。我们使用一种开源语言(Python),并提供一个随附的公共 Jupyter Notebook,该笔记本使用了 1000 个功能连接组项目数据集。此外,我们想强调一下我们的笔记本中专门用于大脑网络中高阶相互作用的现实可视化的一部分。该流水线提供了在大脑图谱中投影的成对和高阶相互作用的三维(3-D)图,这是为网络神经科学量身定制的新功能。