用于脑连接性分析的方法及其在大鼠局部场电位记录中的应用
Methods for Brain Connectivity Analysis with Applications to Rat Local Field Potential Recordings.
作者信息
El-Yaagoubi Anass B, Aslan Sipan, Gomawi Farah, Redondo Paolo V, Roy Sarbojit, Sultan Malik S, Talento Mara S, Tarrazona Francine T, Wu Haibo, Cooper Keiland W, Fortin Norbert J, Ombao Hernando
机构信息
Statistics Program, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia.
Department of Mathematics, Ateneo de Manila University, Quezon City 1108, Philippines.
出版信息
Entropy (Basel). 2025 Mar 21;27(4):328. doi: 10.3390/e27040328.
Modeling the brain dependence network is central to understanding underlying neural mechanisms such as perception, action, and memory. In this study, we present a broad range of statistical methods for analyzing dependence in a brain network. Leveraging a combination of classical and cutting-edge approaches, we analyze multivariate hippocampal local field potential (LFP) time series data concentrating on the encoding of nonspatial olfactory information in rats. We present the strengths and limitations of each method in capturing neural dynamics and connectivity. Our analysis begins with exploratory techniques, including correlation, partial correlation, spectral matrices, and coherence, to establish foundational connectivity insights. We then investigate advanced methods such as Granger causality (GC), robust canonical coherence analysis, spectral transfer entropy (STE), and wavelet coherence to capture dynamic and nonlinear interactions. Additionally, we investigate the utility of topological data analysis (TDA) to extract multi-scale topological features and explore deep learning-based canonical correlation frameworks for connectivity modeling. This comprehensive approach offers an introduction to the state-of-the-art techniques for the analysis of dependence networks, emphasizing the unique strengths of various methodologies, addressing computational challenges, and paving the way for future research.
对大脑依赖网络进行建模是理解诸如感知、行动和记忆等潜在神经机制的核心。在本研究中,我们提出了一系列广泛的统计方法来分析大脑网络中的依赖关系。利用经典方法与前沿方法相结合的方式,我们分析了多元海马局部场电位(LFP)时间序列数据,重点关注大鼠非空间嗅觉信息的编码。我们展示了每种方法在捕捉神经动力学和连通性方面的优势与局限性。我们的分析从探索性技术开始,包括相关性、偏相关性、谱矩阵和相干性,以建立基础的连通性见解。然后,我们研究诸如格兰杰因果关系(GC)、稳健典型相干分析、谱转移熵(STE)和小波相干等先进方法,以捕捉动态和非线性相互作用。此外,我们研究拓扑数据分析(TDA)提取多尺度拓扑特征的效用,并探索基于深度学习的典型相关框架用于连通性建模。这种综合方法介绍了用于分析依赖网络的最先进技术,强调了各种方法的独特优势,解决了计算挑战,并为未来研究铺平了道路。