Suppr超能文献

基于超网络的 urn 模型解释群体动力学。

A hypernetwork-based urn model for explaining collective dynamics.

机构信息

School of Public Policy and Administration, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China.

School of Economics and Finance, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China.

出版信息

PLoS One. 2023 Sep 19;18(9):e0291778. doi: 10.1371/journal.pone.0291778. eCollection 2023.

Abstract

The topological characterization of complex systems has significantly contributed to our understanding of the principles of collective dynamics. However, the representation of general complex networks is not enough for explaining certain problems, such as collective actions. Considering the effectiveness of hypernetworks on modeling real-world complex networks, in this paper, we proposed a hypernetwork-based Pólya urn model that considers the effect of group identity. The mathematical deduction and simulation experiments show that social influence provides a strong imitation environment for individuals, which can prevent the dynamics from being self-correcting. Additionally, the unpredictability of the social system increases with growing social influence, and the effect of group identity can moderate market inequality caused by individual preference and social influence. The present work provides a modeling basis for a better understanding of the logic of collective dynamics.

摘要

复杂系统的拓扑特征化对我们理解集体动力学原理有重大贡献。然而,一般复杂网络的表示不足以解释某些问题,例如集体行动。考虑到超网络在建模真实复杂网络方面的有效性,在本文中,我们提出了一种基于超网络的 Pólya urn 模型,该模型考虑了群体身份的影响。数学推导和模拟实验表明,社会影响为个体提供了一个强大的模仿环境,这可以防止动力学自我修正。此外,随着社会影响的增加,社会系统的不可预测性也会增加,而群体身份的影响可以缓和个体偏好和社会影响引起的市场不平等。本工作为更好地理解集体动力学的逻辑提供了建模基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59df/10508602/94e7938e770b/pone.0291778.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验