Suppr超能文献

对美国 COVID-19 疫情动态的推断。

Inference on the dynamics of COVID-19 in the United States.

机构信息

Department of Statistics, University of California, Davis, 95616, USA.

Graduate Group in BioStatistics, University of California, Davis, 95616, USA.

出版信息

Sci Rep. 2022 Feb 10;12(1):2253. doi: 10.1038/s41598-021-04494-z.

Abstract

The evolution of the COVID-19 pandemic is described through a time-dependent stochastic dynamic model in discrete time. The proposed multi-compartment model is expressed through a system of difference equations. Information on the social distancing measures and diagnostic testing rates are incorporated to characterize the dynamics of the various compartments of the model. In contrast with conventional epidemiological models, the proposed model involves interpretable temporally static and dynamic epidemiological rate parameters. A model fitting strategy built upon nonparametric smoothing is employed for estimating the time-varying parameters, while profiling over the time-independent parameters. Confidence bands of the parameters are obtained through a residual bootstrap procedure. A key feature of the methodology is its ability to estimate latent unobservable compartments such as the number of asymptomatic but infected individuals who are known to be the key vectors of COVID-19 spread. The nature of the disease dynamics is further quantified by relevant epidemiological markers that make use of the estimates of latent compartments. The methodology is applied to understand the true extent and dynamics of the pandemic in various states within the United States (US).

摘要

通过离散时间的时变随机动态模型描述 COVID-19 大流行的演变。所提出的多隔室模型通过差分方程系统表示。纳入了关于社交距离措施和诊断检测率的信息,以描述模型各个隔室的动态。与传统的流行病学模型相比,所提出的模型涉及可解释的时间静态和动态流行病学率参数。基于非参数平滑的模型拟合策略用于估计时变参数,同时对时间独立参数进行分析。通过残差引导程序获得参数的置信带。该方法的一个关键特征是其能够估计潜在的不可观测隔室,例如已知是 COVID-19 传播的关键载体的无症状但感染的个体数量。通过利用潜在隔室的估计值的相关流行病学标记进一步量化疾病动态的性质。该方法用于了解美国(美国)各个州大流行的真实程度和动态。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e77d/8831615/f8c0e4746721/41598_2021_4494_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验