Suppr超能文献

对用于新型冠状病毒肺炎(COVID-19)研究、预测和管理的数学建模、人工智能及数据集的综述。

A review of mathematical modeling, artificial intelligence and datasets used in the study, prediction and management of COVID-19.

作者信息

Mohamadou Youssoufa, Halidou Aminou, Kapen Pascalin Tiam

机构信息

University Institute of Technology, University of Ngaoundere, P.O Box 454, Ngaoundere, Cameroon.

BEEMo Lab, ISST, Université des Montagnes, P.O. Box 208, Bangangté, Cameroon.

出版信息

Appl Intell (Dordr). 2020;50(11):3913-3925. doi: 10.1007/s10489-020-01770-9. Epub 2020 Jul 6.

Abstract

In the past few months, several works were published in regards to the dynamics and early detection of COVID-19 via mathematical modeling and Artificial intelligence (AI). The aim of this work is to provide the research community with comprehensive overview of the methods used in these studies as well as a compendium of available open source datasets in regards to COVID-19. In all, 61 journal articles, reports, fact sheets, and websites dealing with COVID-19 were studied and reviewed. It was found that most mathematical modeling done were based on the Susceptible-Exposed-Infected-Removed (SEIR) and Susceptible-infected-recovered (SIR) models while most of the AI implementations were Convolutional Neural Network (CNN) on X-ray and CT images. In terms of available datasets, they include aggregated case reports, medical images, management strategies, healthcare workforce, demography, and mobility during the outbreak. Both Mathematical modeling and AI have both shown to be reliable tools in the fight against this pandemic. Several datasets concerning the COVID-19 have also been collected and shared open source. However, much work is needed to be done in the diversification of the datasets. Other AI and modeling applications in healthcare should be explored in regards to this COVID-19.

摘要

在过去几个月里,有几篇关于通过数学建模和人工智能(AI)对新冠病毒疾病(COVID-19)的动态变化及早期检测的研究成果发表。这项工作的目的是为研究界提供这些研究中所使用方法的全面概述,以及关于COVID-19的可用开源数据集汇编。总共研究和审查了61篇涉及COVID-19的期刊文章、报告、情况说明书和网站。研究发现,大多数数学建模是基于易感-暴露-感染-康复(SEIR)和易感-感染-康复(SIR)模型,而大多数人工智能应用是针对X射线和CT图像的卷积神经网络(CNN)。在可用数据集方面,它们包括汇总病例报告、医学图像、管理策略、医护人员、人口统计学以及疫情期间的流动性。数学建模和人工智能在抗击这场大流行中都已证明是可靠的工具。还收集了几个关于COVID-19的数据集并开源共享。然而,在数据集的多样化方面仍有许多工作要做。关于这种COVID-19,还应探索医疗保健中的其他人工智能和建模应用。

相似文献

1
A review of mathematical modeling, artificial intelligence and datasets used in the study, prediction and management of COVID-19.
Appl Intell (Dordr). 2020;50(11):3913-3925. doi: 10.1007/s10489-020-01770-9. Epub 2020 Jul 6.
2
Current Artificial Intelligence (AI) Techniques, Challenges, and Approaches in Controlling and Fighting COVID-19: A Review.
Int J Environ Res Public Health. 2022 May 12;19(10):5901. doi: 10.3390/ijerph19105901.
3
Combating COVID-19 Crisis using Artificial Intelligence (AI) Based Approach: Systematic Review.
Curr Top Med Chem. 2024;24(8):737-753. doi: 10.2174/0115680266282179240124072121.
4
An automated diagnosis and classification of COVID-19 from chest CT images using a transfer learning-based convolutional neural network.
Comput Biol Med. 2022 May;144:105383. doi: 10.1016/j.compbiomed.2022.105383. Epub 2022 Mar 10.
5
A Systematic Review on the Use of AI and ML for Fighting the COVID-19 Pandemic.
IEEE Trans Artif Intell. 2021 Mar 1;1(3):258-270. doi: 10.1109/TAI.2021.3062771. eCollection 2020 Dec.
6
Diagnosis of COVID-19 Using Machine Learning and Deep Learning: A Review.
Curr Med Imaging. 2021;17(12):1403-1418. doi: 10.2174/1573405617666210713113439.
7
Role of deep learning in early detection of COVID-19: Scoping review.
Comput Methods Programs Biomed Update. 2021;1:100025. doi: 10.1016/j.cmpbup.2021.100025. Epub 2021 Jul 30.
8
Artificial intelligence in clinical care amidst COVID-19 pandemic: A systematic review.
Comput Struct Biotechnol J. 2021;19:2833-2850. doi: 10.1016/j.csbj.2021.05.010. Epub 2021 May 7.
10
Artificial intelligence at the time of COVID-19: who does the lion's share?
Clin Chem Lab Med. 2022 Apr 25;60(12):1881-1886. doi: 10.1515/cclm-2022-0306. Print 2022 Nov 25.

引用本文的文献

1
A Forecast Model for COVID-19 Spread Trends Using Blog and GPS Data from Smartphones.
Entropy (Basel). 2025 Jun 26;27(7):686. doi: 10.3390/e27070686.
2
Weather Conditions and COVID-19 Cases: Insights from the GCC Countries.
Intell Syst Appl. 2022 Sep;15:200093. doi: 10.1016/j.iswa.2022.200093. Epub 2022 Jun 18.
3
Preventive and control system for the life cycle of a pandemic.
J Saf Sci Resil. 2022 Dec;3(4):321-329. doi: 10.1016/j.jnlssr.2022.06.002. Epub 2022 Jul 9.
5
Building Digital Twins for Cardiovascular Health: From Principles to Clinical Impact.
J Am Heart Assoc. 2024 Oct;13(19):e031981. doi: 10.1161/JAHA.123.031981. Epub 2024 Aug 1.
6
Navigating Novel Viral Challenges: Understanding, Tracking, and Mitigating Emerging Threats.
Microorganisms. 2024 Apr 17;12(4):807. doi: 10.3390/microorganisms12040807.
7
8
Innovative applications of artificial intelligence during the COVID-19 pandemic.
Infect Med (Beijing). 2024 Feb 21;3(1):100095. doi: 10.1016/j.imj.2024.100095. eCollection 2024 Mar.
9
A dynamic approach to support outbreak management using reinforcement learning and semi-connected SEIQR models.
BMC Public Health. 2024 Mar 11;24(1):751. doi: 10.1186/s12889-024-18251-0.
10
Structural and practical identifiability analysis in bioengineering: a beginner's guide.
J Biol Eng. 2024 Mar 4;18(1):20. doi: 10.1186/s13036-024-00410-x.

本文引用的文献

1
A Time-Dependent SIR Model for COVID-19 With Undetectable Infected Persons.
IEEE Trans Netw Sci Eng. 2020 Sep 18;7(4):3279-3294. doi: 10.1109/TNSE.2020.3024723. eCollection 2020 Oct 1.
2
Automatic detection of coronavirus disease (COVID-19) using X-ray images and deep convolutional neural networks.
Pattern Anal Appl. 2021;24(3):1207-1220. doi: 10.1007/s10044-021-00984-y. Epub 2021 May 9.
4
Management strategies in a SEIR-type model of COVID 19 community spread.
Sci Rep. 2020 Dec 4;10(1):21256. doi: 10.1038/s41598-020-77628-4.
6
Modeling and prediction of the 2019 coronavirus disease spreading in China incorporating human migration data.
PLoS One. 2020 Oct 27;15(10):e0241171. doi: 10.1371/journal.pone.0241171. eCollection 2020.
7
New approximations, and policy implications, from a delayed dynamic model of a fast pandemic.
Physica D. 2020 Dec 15;414:132701. doi: 10.1016/j.physd.2020.132701. Epub 2020 Aug 25.
9
Inf-Net: Automatic COVID-19 Lung Infection Segmentation From CT Images.
IEEE Trans Med Imaging. 2020 Aug;39(8):2626-2637. doi: 10.1109/TMI.2020.2996645.
10
Modeling strict age-targeted mitigation strategies for COVID-19.
PLoS One. 2020 Jul 24;15(7):e0236237. doi: 10.1371/journal.pone.0236237. eCollection 2020.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验