Suppr超能文献

应用经验模态分解改进美国国内生产总值(GDP)数据预测的深度学习方法

Application of empirical mode decomposition to improve deep learning for US GDP data forecasting.

作者信息

Lin Shih-Lin

机构信息

Graduate Institute of Vehicle Engineering, National Changhua University of Education, No.1, Jin-De Road, Changhua City, 50007, Taiwan.

出版信息

Heliyon. 2022 Jan 12;8(1):e08748. doi: 10.1016/j.heliyon.2022.e08748. eCollection 2022 Jan.

Abstract

The application of deep learning methods to construct deep neural networks for the prediction of future econometric trends and econometric data has come to receive a lot of research attention. However, it has been found that the long short-term memory (LSTM) model is unstable and overly complex. It also lacks rules for handling econometric data, which can cause errors in prediction and in the actual data. This paper proposes an empirical mode decomposition (EMD) method designed to improve deep learning for understanding US GDP trends and US GDP data prediction research. The US GDP growth rate is used only for LSTM model prediction and for real data comparison; the root mean squared error (RMSE) is 2.7274. The US GDP growth rate is EMD decomposed to obtain the intrinsic mode functions (IMFs) after which the LSTM model is used to predict an RMSE of 0.93557.

摘要

将深度学习方法应用于构建深度神经网络以预测未来计量经济趋势和计量经济数据已受到大量研究关注。然而,人们发现长短期记忆(LSTM)模型不稳定且过于复杂。它还缺乏处理计量经济数据的规则,这可能导致预测和实际数据出现误差。本文提出一种经验模态分解(EMD)方法,旨在改进深度学习以理解美国国内生产总值(GDP)趋势和美国GDP数据预测研究。美国GDP增长率仅用于LSTM模型预测和实际数据比较;均方根误差(RMSE)为2.7274。对美国GDP增长率进行EMD分解以获得本征模态函数(IMF),之后使用LSTM模型进行预测,RMSE为0.93557。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a11b/8819532/1cdbed5c1dcd/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验