Suppr超能文献

利用文本报告的半监督自然语言处理对心血管磁共振成像进行自动诊断标注

Automatic Diagnosis Labeling of Cardiovascular MRI by Using Semisupervised Natural Language Processing of Text Reports.

作者信息

Zaman Sameer, Petri Camille, Vimalesvaran Kavitha, Howard James, Bharath Anil, Francis Darrel, Peters Nicholas, Cole Graham D, Linton Nick

机构信息

National Heart and Lung Institute, Imperial College London, Hammersmith Hospital, Du Cane Road, Second Floor B Block, London W12 0HS, England (S.Z., C.P., K.V., J.H., D.F., N.P., G.D.C.); Imperial College Healthcare National Health Service Trust, London, England (J.H., D.F., N.P., G.D.C., N.L.); and Department of Bioengineering, Imperial College London, London, England (A.B., N.L.).

出版信息

Radiol Artif Intell. 2021 Nov 24;4(1):e210085. doi: 10.1148/ryai.210085. eCollection 2022 Jan.

Abstract

PURPOSE

To assess whether the semisupervised natural language processing (NLP) of text from clinical radiology reports could provide useful automated diagnosis categorization for ground truth labeling to overcome manual labeling bottlenecks in the machine learning pipeline.

MATERIALS AND METHODS

In this retrospective study, 1503 text cardiac MRI reports from 2016 to 2019 were manually annotated for five diagnoses by clinicians: normal, dilated cardiomyopathy (DCM), hypertrophic cardiomyopathy, myocardial infarction (MI), and myocarditis. A semisupervised method that uses bidirectional encoder representations from transformers (BERT) pretrained on 1.14 million scientific publications was fine-tuned by using the manually extracted labels, with a report dataset split into groups of 801 for training, 302 for validation, and 400 for testing. The model's performance was compared with two traditional NLP models: a rule-based model and a support vector machine (SVM) model. The models' F1 scores and receiver operating characteristic curves were used to analyze performance.

RESULTS

After 15 epochs, the F1 scores on the test set of 400 reports were as follows: normal, 84%; DCM, 79%; hypertrophic cardiomyopathy, 86%; MI, 91%; and myocarditis, 86%. The pooled F1 score and area under the receiver operating curve were 86% and 0.96, respectively. On the same test set, the BERT model had a higher performance than the rule-based model (F1 score, 42%) and SVM model (F1 score, 82%). Diagnosis categories classified by using the BERT model performed the labeling of 1000 MR images in 0.2 second.

CONCLUSION

The developed model used labels extracted from radiology reports to provide automated diagnosis categorization of MR images with a high level of performance. Semisupervised Learning, Diagnosis/Classification/Application Domain, Named Entity Recognition, MRI © RSNA, 2021.

摘要

目的

评估临床放射学报告文本的半监督自然语言处理(NLP)是否可为真实标签提供有用的自动诊断分类,以克服机器学习流程中的手动标注瓶颈。

材料与方法

在这项回顾性研究中,临床医生对2016年至2019年的1503份心脏MRI文本报告进行了五种诊断的手动标注:正常、扩张型心肌病(DCM)、肥厚型心肌病、心肌梗死(MI)和心肌炎。使用在114万篇科学出版物上预训练的基于变换器的双向编码器表征(BERT)的半监督方法,通过使用手动提取的标签进行微调,报告数据集分为801组用于训练、302组用于验证、400组用于测试。将该模型的性能与两种传统NLP模型进行比较:基于规则的模型和支持向量机(SVM)模型。使用模型的F1分数和接收器操作特征曲线分析性能。

结果

经过15个轮次后,400份报告测试集上的F1分数如下:正常,84%;DCM,79%;肥厚型心肌病,86%;MI,91%;心肌炎,86%。合并F1分数和接收器操作曲线下面积分别为86%和0.96。在同一测试集上,BERT模型的性能高于基于规则的模型(F1分数,42%)和SVM模型(F1分数,82%)。使用BERT模型分类的诊断类别在0.2秒内完成了1000幅MR图像的标注。

结论

所开发的模型使用从放射学报告中提取的标签,为MR图像提供了高性能的自动诊断分类。半监督学习、诊断/分类/应用领域、命名实体识别、MRI © RSNA,2021。

相似文献

6
RadBERT: Adapting Transformer-based Language Models to Radiology.RadBERT:使基于Transformer的语言模型适用于放射学领域。
Radiol Artif Intell. 2022 Jun 15;4(4):e210258. doi: 10.1148/ryai.210258. eCollection 2022 Jul.

引用本文的文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验