Suppr超能文献

高效深度学习的高效标注:一种多图像排序方法在生成大量训练数据以应用于心脏MRI心室切片水平分类中的优势。

Efficient labelling for efficient deep learning: the benefit of a multiple-image-ranking method to generate high volume training data applied to ventricular slice level classification in cardiac MRI.

作者信息

Zaman Sameer, Vimalesvaran Kavitha, Howard James P, Chappell Digby, Varela Marta, Peters Nicholas S, Francis Darrel P, Bharath Anil A, Linton Nick W F, Cole Graham D

机构信息

National Heart and Lung Institute, Imperial College London, London, UK.

Imperial College Healthcare NHS Trust, London, UK.

出版信息

J Med Artif Intell. 2023 Apr;6:4. doi: 10.21037/jmai-22-55.

Abstract

BACKGROUND

Getting the most value from expert clinicians' limited labelling time is a major challenge for artificial intelligence (AI) development in clinical imaging. We present a novel method for ground-truth labelling of cardiac magnetic resonance imaging (CMR) image data by leveraging multiple clinician experts ranking multiple images on a single ordinal axis, rather than manual labelling of one image at a time. We apply this strategy to train a deep learning (DL) model to classify the anatomical position of CMR images. This allows the automated removal of slices that do not contain the left ventricular (LV) myocardium.

METHODS

Anonymised LV short-axis slices from 300 random scans (3,552 individual images) were extracted. Each image's anatomical position relative to the LV was labelled using two different strategies performed for 5 hours each: (I) 'one-image-at-a-time': each image labelled according to its position: 'too basal', 'LV', or 'too apical' individually by one of three experts; and (II) 'multiple-image-ranking': three independent experts ordered slices according to their relative position from 'most-basal' to 'most apical' in batches of eight until each image had been viewed at least 3 times. Two convolutional neural networks were trained for a three-way classification task (each model using data from one labelling strategy). The models' performance was evaluated by accuracy, F1-score, and area under the receiver operating characteristics curve (ROC AUC).

RESULTS

After excluding images with artefact, 3,323 images were labelled by both strategies. The model trained using labels from the 'multiple-image-ranking strategy' performed better than the model using the 'one-image-at-a-time' labelling strategy (accuracy 86% 72%, P=0.02; F1-score 0.86 0.75; ROC AUC 0.95 0.86). For expert clinicians performing this task manually the intra-observer variability was low (Cohen's κ=0.90), but the inter-observer variability was higher (Cohen's κ=0.77).

CONCLUSIONS

We present proof of concept that, given the same clinician labelling effort, comparing multiple images side-by-side using a 'multiple-image-ranking' strategy achieves ground truth labels for DL more accurately than by classifying images individually. We demonstrate a potential clinical application: the automatic removal of unrequired CMR images. This leads to increased efficiency by focussing human and machine attention on images which are needed to answer clinical questions.

摘要

背景

在临床影像人工智能(AI)开发中,如何从专家临床医生有限的标注时间中获取最大价值是一项重大挑战。我们提出了一种用于心脏磁共振成像(CMR)图像数据真实标注的新方法,即利用多位临床医生专家在单个有序轴上对多个图像进行排序,而不是一次手动标注一张图像。我们应用此策略训练深度学习(DL)模型来对CMR图像的解剖位置进行分类。这允许自动去除不包含左心室(LV)心肌的切片。

方法

从300次随机扫描(共3552张个体图像)中提取匿名的LV短轴切片。使用两种不同策略对每张图像相对于LV的解剖位置进行标注,每种策略各执行5小时:(I)“一次一张图像”:由三位专家之一分别根据每张图像的位置将其标注为“太靠基底部”、“LV”或“太靠心尖部';(II)“多张图像排序”:三位独立专家将切片按相对位置从“最靠基底部”到“最靠心尖部”分批八张进行排序,直到每张图像至少被查看3次。针对三项分类任务训练了两个卷积神经网络(每个模型使用一种标注策略的数据)。通过准确率、F1分数和受试者工作特征曲线下面积(ROC AUC)评估模型性能。

结果

排除有伪影的图像后,两种策略共标注了3323张图像。使用“多张图像排序策略”标注训练的模型比使用“一次一张图像”标注策略训练的模型表现更好(准确率86%对72%,P = 0.02;F1分数0.86对0.75;ROC AUC 0.95对0.86)。对于手动执行此任务的专家临床医生,观察者内变异性较低(科恩kappa系数=0.90),但观察者间变异性较高(科恩kappa系数=0.77)。

结论

我们提供了概念验证,即在临床医生标注工作量相同的情况下,使用“多张图像排序”策略并排比较多个图像比单独对图像进行分类能更准确地为DL获取真实标注。我们展示了一种潜在的临床应用:自动去除不需要的CMR图像。这通过将人力和机器注意力集中在回答临床问题所需的图像上提高了效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1af5/7614685/ec3c31f24459/EMS173961-f001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验