Suppr超能文献

通过 PHR1-RALF-FERONIA 抑制植物免疫来塑造根微生物组以缓解磷饥饿。

Plant immunity suppression via PHR1-RALF-FERONIA shapes the root microbiome to alleviate phosphate starvation.

机构信息

State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, China.

Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha, China.

出版信息

EMBO J. 2022 Mar 15;41(6):e109102. doi: 10.15252/embj.2021109102. Epub 2022 Feb 11.

Abstract

The microbiome plays an important role in shaping plant growth and immunity, but few plant genes and pathways impacting plant microbiome composition have been reported. In Arabidopsis thaliana, the phosphate starvation response (PSR) was recently found to modulate the root microbiome upon phosphate (Pi) starvation through the transcriptional regulator PHR1. Here, we report that A. thaliana PHR1 directly binds to the promoters of rapid alkalinization factor (RALF) genes, and activates their expression under phosphate-starvation conditions. RALFs in turn suppress complex formation of pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) receptor through FERONIA, a previously-identified PTI modulator that increases resistance to certain detrimental microorganisms. Suppression of immunity via the PHR1-RALF-FERONIA axis allows colonization by specialized root microbiota that help to alleviate phosphate starvation by upregulating the expression of PSR genes. These findings provide a new paradigm for coordination of host-microbe homeostasis through modulating plant innate immunity after environmental perturbations.

摘要

微生物组在塑造植物生长和免疫方面发挥着重要作用,但很少有报道称植物基因和途径会影响植物微生物组的组成。在拟南芥中,最近发现磷酸盐饥饿响应 (PSR) 通过转录调节因子 PHR1 在磷酸盐 (Pi) 饥饿时调节根微生物组。在这里,我们报告说,拟南芥 PHR1 直接结合快速碱化因子 (RALF) 基因的启动子,并在磷酸盐饥饿条件下激活它们的表达。RALFs 反过来通过 FERONIA 抑制病原体相关分子模式 (PAMP) 触发免疫 (PTI) 受体的复合物形成,FERONIA 是先前鉴定的 PTI 调节剂,可增加对某些有害微生物的抗性。通过 PHR1-RALF-FERONIA 轴抑制免疫可使专门的根微生物定植,通过上调 PSR 基因的表达来缓解磷酸盐饥饿。这些发现为通过环境扰动后调节植物先天免疫来协调宿主-微生物体内平衡提供了新的范例。

相似文献

1
Plant immunity suppression via PHR1-RALF-FERONIA shapes the root microbiome to alleviate phosphate starvation.
EMBO J. 2022 Mar 15;41(6):e109102. doi: 10.15252/embj.2021109102. Epub 2022 Feb 11.
4
Nitrogen-inducible GLK1 modulates phosphate starvation response via the PHR1-dependent pathway.
New Phytol. 2022 Dec;236(5):1871-1887. doi: 10.1111/nph.18499. Epub 2022 Oct 12.
5
The Phosphate Starvation Response System: Its Role in the Regulation of Plant-Microbe Interactions.
Plant Cell Physiol. 2021 Jul 17;62(3):392-400. doi: 10.1093/pcp/pcab016.

引用本文的文献

1
Potential and challenges for application of microbiomes in agriculture.
Plant Cell. 2025 Aug 4;37(8). doi: 10.1093/plcell/koaf185.
2
Microbial drivers of root plasticity.
New Phytol. 2025 Oct;248(1):52-67. doi: 10.1111/nph.70371. Epub 2025 Jul 21.
3
Peptide Hormone-Mediated Regulation of Plant Development and Environmental Adaptability.
Adv Sci (Weinh). 2025 Sep;12(34):e06590. doi: 10.1002/advs.202506590. Epub 2025 Jul 10.
6
Flagellin sensing, signaling, and immune responses in plants.
Plant Commun. 2025 Jul 14;6(7):101383. doi: 10.1016/j.xplc.2025.101383. Epub 2025 May 20.
7
Signalling and regulation of plant development by carbon/nitrogen balance.
Physiol Plant. 2025 Mar-Apr;177(2):e70228. doi: 10.1111/ppl.70228.
8
The Small Key to the Treasure Chest: Endogenous Plant Peptides Involved in Symbiotic Interactions.
Plants (Basel). 2025 Jan 26;14(3):378. doi: 10.3390/plants14030378.
9
Plant-microbe interactions influence plant performance via boosting beneficial root-endophytic bacteria.
Environ Microbiome. 2025 Feb 4;20(1):18. doi: 10.1186/s40793-025-00680-y.
10
Peptide hormones in plants.
Mol Hortic. 2025 Jan 23;5(1):7. doi: 10.1186/s43897-024-00134-y.

本文引用的文献

1
Coordination of microbe-host homeostasis by crosstalk with plant innate immunity.
Nat Plants. 2021 Jun;7(6):814-825. doi: 10.1038/s41477-021-00920-2. Epub 2021 May 24.
2
FERONIA restricts Pseudomonas in the rhizosphere microbiome via regulation of reactive oxygen species.
Nat Plants. 2021 May;7(5):644-654. doi: 10.1038/s41477-021-00914-0. Epub 2021 May 10.
3
Discriminating symbiosis and immunity signals by receptor competition in rice.
Proc Natl Acad Sci U S A. 2021 Apr 20;118(16). doi: 10.1073/pnas.2023738118.
4
Cell wall-derived mixed-linked β-1,3/1,4-glucans trigger immune responses and disease resistance in plants.
Plant J. 2021 May;106(3):601-615. doi: 10.1111/tpj.15185. Epub 2021 Mar 22.
5
Maintaining Symbiotic Homeostasis: How Do Plants Engage With Beneficial Microorganisms While at the Same Time Restricting Pathogens?
Mol Plant Microbe Interact. 2021 May;34(5):462-469. doi: 10.1094/MPMI-11-20-0318-FI. Epub 2021 Mar 31.
6
The Phosphate Starvation Response System: Its Role in the Regulation of Plant-Microbe Interactions.
Plant Cell Physiol. 2021 Jul 17;62(3):392-400. doi: 10.1093/pcp/pcab016.
7
Nematode-Encoded RALF Peptide Mimics Facilitate Parasitism of Plants through the FERONIA Receptor Kinase.
Mol Plant. 2020 Oct 5;13(10):1434-1454. doi: 10.1016/j.molp.2020.08.014. Epub 2020 Sep 4.
10
Enhancing potato resistance against root-knot nematodes using a plant-defence elicitor delivered by bacteria.
Nat Plants. 2020 Jun;6(6):625-629. doi: 10.1038/s41477-020-0689-0. Epub 2020 Jun 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验