Suppr超能文献

极端时间法(exTREEmaTIME):一种将不确定性纳入分歧时间估计的方法。

exTREEmaTIME: a method for incorporating uncertainty into divergence time estimates.

机构信息

The Jodrell Building, Royal Botanic Gardens Kew, Richmond, London TW9 3AE, UK.

Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK.

出版信息

Biol Open. 2022 Feb 15;11(2). doi: 10.1242/bio.059181. Epub 2022 Feb 11.

Abstract

We present a method of divergence time estimation (exTREEmaTIME) that aims to effectively account for uncertainty in divergence time estimates. The method requires a minimal set of assumptions, and, based on these assumptions, estimates the oldest possible divergence times and youngest possible divergence times that are consistent with the assumptions. We use a series of simulations and empirical analyses to illustrate that exTREEmaTIME is effective at representing uncertainty. We then describe how exTREEmaTIME can act as a basis to determine the implications of the more stringent assumptions that are incorporated into other methods of divergence time estimation that produce more precise estimates. This is critically important given that many of the assumptions that are incorporated into these methods are highly complex, difficult to justify biologically, and as such can lead to estimates that are highly inaccurate. This article has an associated First Person interview with the first author of the paper.

摘要

我们提出了一种分歧时间估计方法(exTREEmaTIME),旨在有效地考虑分歧时间估计的不确定性。该方法需要最少的假设,并基于这些假设,估计与假设一致的最早可能分歧时间和最晚可能分歧时间。我们使用一系列模拟和实证分析来说明 exTREEmaTIME 有效地表示了不确定性。然后,我们描述了如何将 exTREEmaTIME 用作基础,以确定其他分歧时间估计方法中所包含的更严格假设的含义,这些方法产生更精确的估计。鉴于这些方法中所包含的许多假设非常复杂,在生物学上难以证明,因此可能导致估计结果极不准确,因此这一点至关重要。本文附有该论文第一作者的第一人称采访。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d722/8845097/f3dcb0a319d2/biolopen-11-059181-g1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验