Suppr超能文献

血清 RNA 可在肺癌诊断前 10 年预测。

Serum RNAs can predict lung cancer up to 10 years prior to diagnosis.

机构信息

Department of Research, Cancer Registry of Norway, Oslo, Norway.

Department of Epidemiology and Biostatistics, Imperial College London, London, United Kingdom.

出版信息

Elife. 2022 Feb 11;11:e71035. doi: 10.7554/eLife.71035.

Abstract

Lung cancer (LC) prognosis is closely linked to the stage of disease when diagnosed. We investigated the biomarker potential of serum RNAs for the early detection of LC in smokers at different prediagnostic time intervals and histological subtypes. In total, 1061 samples from 925 individuals were analyzed. RNA sequencing with an average of 18 million reads per sample was performed. We generated machine learning models using normalized serum RNA levels and found that smokers later diagnosed with LC in 10 years can be robustly separated from healthy controls regardless of histology with an average area under the ROC curve (AUC) of 0.76 (95% CI, 0.68-0.83). Furthermore, the strongest models that took both time to diagnosis and histology into account successfully predicted non-small cell LC (NSCLC) between 6 and 8 years, with an AUC of 0.82 (95% CI, 0.76-0.88), and SCLC between 2 and 5 years, with an AUC of 0.89 (95% CI, 0.77-1.0), before diagnosis. The most important separators were microRNAs, miscellaneous RNAs, isomiRs, and tRNA-derived fragments. We have shown that LC can be detected years before diagnosis and manifestation of disease symptoms independently of histological subtype. However, the highest AUCs were achieved for specific subtypes and time intervals before diagnosis. The collection of models may therefore also predict the severity of cancer development and its histology. Our study demonstrates that serum RNAs can be promising prediagnostic biomarkers in an LC screening setting, from early detection to risk assessment.

摘要

肺癌 (LC) 的预后与诊断时的疾病分期密切相关。我们研究了血清 RNA 作为生物标志物在不同预诊断时间间隔和组织学亚型的吸烟者中对 LC 的早期检测的潜力。总共分析了 925 名个体的 1061 个样本。对每个样本进行了平均 1800 万条读长的 RNA 测序。我们使用归一化血清 RNA 水平生成了机器学习模型,发现即使考虑组织学因素,10 年内被诊断为 LC 的吸烟者仍可与健康对照者很好地分离,平均 ROC 曲线下面积 (AUC) 为 0.76(95%CI,0.68-0.83)。此外,同时考虑到诊断时间和组织学的最强模型成功地预测了 6 至 8 年内的非小细胞肺癌 (NSCLC),AUC 为 0.82(95%CI,0.76-0.88),2 至 5 年内的小细胞肺癌,AUC 为 0.89(95%CI,0.77-1.0),在诊断之前。最重要的分隔物是 microRNAs、 miscellaneous RNAs、isomiRs 和 tRNA 衍生片段。我们已经表明,LC 可以在独立于组织学亚型的情况下,在诊断和疾病症状出现多年前被检测到。然而,在特定的亚型和诊断前时间间隔中,获得了最高的 AUC。模型的集合也可以预测癌症发展的严重程度及其组织学。我们的研究表明,血清 RNA 可以成为 LC 筛查环境中很有前途的预诊断生物标志物,从早期检测到风险评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1c8/8884722/d042e4c12635/elife-71035-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验