Suppr超能文献

一种用于院外心脏骤停后长期神经功能预后早期预测的局部优化机器学习方法。

A locally optimised machine learning approach to early prognostication of long-term neurological outcomes after out-of-hospital cardiac arrest.

作者信息

Pey Vincent, Doumard Emmanuel, Komorowski Matthieu, Rouget Antoine, Delmas Clément, Vardon-Bounes Fanny, Poette Michaël, Ratineau Valentin, Dray Cédric, Ader Isabelle, Minville Vincent

机构信息

RESTORE Research Center, University Toulouse 3-Paul Sabatier, INSERM, CNRS, EFS, ENVT, Toulouse, France.

Department of Anaesthesiology and Critical Care, University Hospital of Toulouse, University Toulouse 3-Paul Sabatier, Toulouse, France.

出版信息

Digit Health. 2024 Apr 15;10:20552076241234746. doi: 10.1177/20552076241234746. eCollection 2024 Jan-Dec.

Abstract

BACKGROUND

Out-of-hospital cardiac arrest (OHCA) represents a major burden for society and health care, with an average incidence in adults of 67 to 170 cases per 100,000 person-years in Europe and in-hospital survival rates of less than 10%. Patients and practitioners would benefit from a prognostication tool for long-term good neurological outcomes.

OBJECTIVE

We aim to develop a machine learning (ML) pipeline on a local database to classify patients according to their neurological outcomes and identify prognostic features.

METHODS

We collected clinical and biological data consecutively from 595 patients who presented OHCA and were routed to a single regional cardiac arrest centre in the south of France. We applied recursive feature elimination and ML analyses to identify the main features associated with a good neurological outcome, defined as a Cerebral Performance Category score less than or equal to 2 at six months post-OHCA.

RESULTS

We identified 12 variables 24 h after admission, capable of predicting a six-month good neurological outcome. The best model (extreme gradient boosting) achieved an AUC of 0.96 and an accuracy of 0.92 in the test cohort.

CONCLUSION

We demonstrated that it is possible to build accurate, locally optimised prediction and prognostication scores using datasets of limited size and breadth. We proposed and shared a generic machine-learning pipeline which allows external teams to replicate the approach locally.

摘要

背景

院外心脏骤停(OHCA)给社会和医疗保健带来了重大负担,在欧洲,成年人的平均发病率为每10万人年67至170例,院内生存率低于10%。患者和从业者将受益于一种用于预测长期良好神经学转归的工具。

目的

我们旨在基于本地数据库开发一个机器学习(ML)流程,以便根据患者的神经学转归进行分类,并识别预后特征。

方法

我们连续收集了595例出现OHCA并被送往法国南部一个单一区域心脏骤停中心的患者的临床和生物学数据。我们应用递归特征消除和ML分析来识别与良好神经学转归相关的主要特征,良好神经学转归定义为OHCA后6个月时脑功能分类评分小于或等于2。

结果

我们在入院24小时后识别出12个变量能够预测6个月时良好的神经学转归。最佳模型(极端梯度提升)在测试队列中的AUC为0.96,准确率为0.92。

结论

我们证明了使用规模和广度有限的数据集构建准确的、局部优化预测和预后评分是可行的。我们提出并分享了一个通用的机器学习流程,使外部团队能够在本地复制该方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a95/11020739/94eb6d4d23d6/10.1177_20552076241234746-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验