Suppr超能文献

基于 CT 影像组学-临床模型预测急性与慢性骨质疏松性椎体骨折。

Prediction of acute versus chronic osteoporotic vertebral fracture using radiomics-clinical model on CT.

机构信息

Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Tai'an 271000, China.

GE Healthcare, Precision Health Institution, Shanghai 210000, China.

出版信息

Eur J Radiol. 2022 Apr;149:110197. doi: 10.1016/j.ejrad.2022.110197. Epub 2022 Feb 5.

Abstract

PURPOSE

This paper aims to use radiomics-clinical analysis based on CT imaging to distinguish between acute and chronic osteoporotic vertebral fractures.

METHOD

A total of 147 patients who underwent both dual-energy X-ray absorptiometry (DEXA), CT and MRI of the spine were analyzed retrospectively. The patients were assigned to either a training cohort (n = 103) or a validation cohort (n = 44). The radiomics model and combined nomogram model were established by multivariate logistic regression analysis. The predictive performance was assessed with receiver operating characteristic (ROC) curve.

RESULTS

Fourteen radiomic features based on spine CT images were constructed to distinguish acute versus chronic osteoporotic vertebral fractures, and its differentialperformance was good with an area under the curve (AUC) of 0.90 (95% CI, 0.84-0.95) in the training cohort and 0.82 (95% CI, 0.69-0.94) in the validation cohort. Based on the radiomic signature and clinical fracture line feature, a combined nomogram was developed and showed excellent differential ability with highest AUC of 0.93 (95 %CI,0.88-0.98) in the training cohort and 0.86 (95 %CI,0.73-0.98) in the validation cohort, which performed better than the clinical model significantly only.

CONCLUSIONS

A quantitative nomogram based on clinical fracture line feature and radiomic features of CT images can be used to distinguish acute and chronic osteoporotic vertebral fractures with excellent predictive ability, which can be served as a potential decision support tool to assist clinicians in evaluating the phase of vertebral fractures timely, especially in situation where spine MRI was not available for patient.

摘要

目的

本研究旨在利用基于 CT 成像的放射组学-临床分析来区分急性和慢性骨质疏松性椎体骨折。

方法

回顾性分析了 147 例同时接受双能 X 线吸收法(DEXA)、脊柱 CT 和 MRI 检查的患者。患者被分配到训练队列(n=103)或验证队列(n=44)。通过多变量逻辑回归分析建立放射组学模型和联合列线图模型。采用受试者工作特征(ROC)曲线评估预测性能。

结果

基于脊柱 CT 图像构建了 14 个放射组学特征,以区分急性与慢性骨质疏松性椎体骨折,其鉴别性能良好,在训练队列中的曲线下面积(AUC)为 0.90(95%置信区间,0.84-0.95),在验证队列中的 AUC 为 0.82(95%置信区间,0.69-0.94)。基于放射组学特征和临床骨折线特征,建立了联合列线图,在训练队列中的 AUC 为 0.93(95%置信区间,0.88-0.98),在验证队列中的 AUC 为 0.86(95%置信区间,0.73-0.98),具有优异的鉴别能力,明显优于临床模型。

结论

基于临床骨折线特征和 CT 图像放射组学特征的定量列线图可用于区分急性和慢性骨质疏松性椎体骨折,具有优异的预测能力,可作为一种潜在的决策支持工具,帮助临床医生及时评估椎体骨折的阶段,特别是在患者无法进行脊柱 MRI 检查的情况下。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验