Kragskow Jon G C, Marbey Jonathan, Buch Christian D, Nehrkorn Joscha, Ozerov Mykhaylo, Piligkos Stergios, Hill Stephen, Chilton Nicholas F
Department of Chemistry, School of Natural Sciences, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
National High Magnetic Field Laboratory, Tallahassee, FL, 32310, USA.
Nat Commun. 2022 Feb 11;13(1):825. doi: 10.1038/s41467-022-28352-2.
Vibronic coupling, the interaction between molecular vibrations and electronic states, is a fundamental effect that profoundly affects chemical processes. In the case of molecular magnetic materials, vibronic, or spin-phonon, coupling leads to magnetic relaxation, which equates to loss of magnetic memory and loss of phase coherence in molecular magnets and qubits, respectively. The study of vibronic coupling is challenging, and most experimental evidence is indirect. Here we employ far-infrared magnetospectroscopy to directly probe vibronic transitions in [Yb(trensal)] (where Htrensal = 2,2,2-tris(salicylideneimino)trimethylamine). We find intense signals near electronic states, which we show arise due to an "envelope effect" in the vibronic coupling Hamiltonian, which we calculate fully ab initio to simulate the spectra. We subsequently show that vibronic coupling is strongest for vibrational modes that simultaneously distort the first coordination sphere and break the C symmetry of the molecule. With this knowledge, vibrational modes could be identified and engineered to shift their energy towards or away from particular electronic states to alter their impact. Hence, these findings provide new insights towards developing general guidelines for the control of vibronic coupling in molecules.
振动电子耦合,即分子振动与电子态之间的相互作用,是一种深刻影响化学过程的基本效应。在分子磁性材料的情况下,振动电子耦合或自旋 - 声子耦合会导致磁弛豫,这分别等同于分子磁体和量子比特中磁记忆的丧失和相位相干性的丧失。振动电子耦合的研究具有挑战性,并且大多数实验证据都是间接的。在这里,我们采用远红外磁光谱法直接探测[Yb(trensal)](其中Htrensal = 2,2,2 - 三(水杨基亚氨基)三甲胺)中的振动电子跃迁。我们在电子态附近发现了强烈的信号,我们表明这些信号是由于振动电子耦合哈密顿量中的“包络效应”引起的,我们通过完全从头算来计算以模拟光谱。随后我们表明,对于同时扭曲第一配位层并破坏分子C对称性的振动模式,振动电子耦合最强。有了这些认识,就可以识别和设计振动模式,使其能量向特定电子态移动或远离特定电子态,以改变它们的影响。因此,这些发现为制定控制分子中振动电子耦合的一般准则提供了新的见解。