Suppr超能文献

用于预测急性肾损伤后肾脏恢复情况的细胞周期阻滞生物标志物:一项前瞻性验证研究。

Cell cycle arrest biomarkers for predicting renal recovery from acute kidney injury: a prospective validation study.

作者信息

Jia Hui-Miao, Cheng Li, Weng Yi-Bing, Wang Jing-Yi, Zheng Xi, Jiang Yi-Jia, Xin Xin, Guo Shu-Yan, Chen Chao-Dong, Guo Fang-Xing, Han Yu-Zhen, Zhang Tian-En, Li Wen-Xiong

机构信息

Department of Surgical Intensive Critical Unit, Beijing Chao-yang Hospital, Capital Medical University, 8 Gongren Tiyuchang Nanlu, Chaoyang District, Beijing, 100020, China.

Department of Emergent Intensive Critical Unit, Beijing Lu-He Hospital, Capital Medical University, Beijing, 101100, China.

出版信息

Ann Intensive Care. 2022 Feb 12;12(1):14. doi: 10.1186/s13613-022-00989-8.

Abstract

BACKGROUND

Acute kidney injury (AKI) is a common disease in the intensive care unit (ICU). AKI patients with nonrecovery of renal function have a markedly increased risk of death compared with patients with recovery. The current study aimed to explore and validate the utility of urinary cell cycle arrest biomarkers for predicting nonrecovery in patients who developed AKI after ICU admission.

METHODS

We prospectively and consecutively enrolled 379 critically ill patients who developed AKI after admission to the ICU, which were divided into a derivation cohort (194 AKI patients) and a validation cohort (185 AKI patients). The biomarkers of urinary tissue inhibitor of metalloproteinase-2 (TIMP-2) and insulin-like growth factor-binding protein 7 (IGFBP7) were detected at inclusion immediately after AKI diagnosis (day 0) and 24 h later (day 1). The optimal cut-off values of these biomarkers for predicting nonrecovery were estimated in the derivation cohort, and their predictive accuracy was assessed in the validation cohort. The primary endpoint was nonrecovery from AKI (within 7 days).

RESULTS

Of 379 patients, 159 (41.9%) patients failed to recover from AKI onset, with 79 in the derivation cohort and 80 in the validation cohort. Urinary [TIMP-2][IGFBP7] on day 0 showed a better prediction ability for nonrecovery than TIMP-2 and IGFBP7 alone, with an area under the reciever operating characteristic curve (AUC) of 0.751 [95% confidence interval (CI) 0.701-0.852, p < 0.001] and an optimal cut-off value of 1.05 ((ng/mL)/1000). When [TIMP-2][IGFBP7] was combined with the clinical factors of AKI diagnosed by the urine output (UO) criteria, AKI stage 2-3 and nonrenal SOFA score for predicting nonrecovery, the AUC was significantly improved to 0.852 (95% CI 0.750-0.891, p < 0.001), which achieved a sensitivity and specificity of 88.8% (72.9, 98.7) and 92.6% (80.8, 100.0), respectively. However, urine [TIMP-2]*[IGFBP7], TIMP-2 alone, and IGFBP7 alone on day 1 performed poorly for predicting AKI recovery.

CONCLUSION

Urinary [TIMP-2][IGFBP7] on day 0 showed a fair performance for predicting nonrecovery from AKI. The predictive accuracy can be improved when urinary [TIMP-2][IGFBP7] is combined with the clinical factors of AKI diagnosed by the UO criteria, AKI stage 2-3 and nonrenal SOFA score.

摘要

背景

急性肾损伤(AKI)是重症监护病房(ICU)中的常见疾病。与肾功能恢复的患者相比,肾功能未恢复的AKI患者死亡风险显著增加。本研究旨在探索并验证尿细胞周期阻滞生物标志物在预测ICU入院后发生AKI患者肾功能未恢复情况中的作用。

方法

我们前瞻性连续纳入了379例ICU入院后发生AKI的重症患者,将其分为推导队列(194例AKI患者)和验证队列(185例AKI患者)。在AKI诊断后立即(第0天)和24小时后(第1天)检测尿金属蛋白酶组织抑制剂-2(TIMP-2)和胰岛素样生长因子结合蛋白7(IGFBP7)的生物标志物。在推导队列中估计这些生物标志物预测肾功能未恢复的最佳临界值,并在验证队列中评估其预测准确性。主要终点是AKI未恢复(7天内)。

结果

379例患者中,159例(41.9%)患者自AKI起病后未恢复,推导队列中有79例,验证队列中有80例。第0天尿[TIMP-2][IGFBP7]对肾功能未恢复的预测能力优于单独的TIMP-2和IGFBP7,受试者操作特征曲线(AUC)下面积为0.751[95%置信区间(CI)0.701 - 0.852,p < 0.001],最佳临界值为1.05((ng/mL)/1000)。当[TIMP-2][IGFBP7]与根据尿量(UO)标准诊断的AKI临床因素、AKI 2 - 3期和非肾序贯器官衰竭评估(SOFA)评分相结合用于预测肾功能未恢复时,AUC显著提高至0.852(95%CI 0.750 - 0.891,p < 0.001),敏感性和特异性分别达到88.8%(72.9,98.7)和92.6%(80.8,100.0)。然而,第1天的尿[TIMP-2]*[IGFBP7]、单独的TIMP-2和单独的IGFBP7在预测AKI恢复方面表现不佳。

结论

第0天的尿[TIMP-2][IGFBP7]在预测AKI未恢复方面表现尚可。当尿[TIMP-2][IGFBP7]与根据UO标准诊断的AKI临床因素、AKI 2 - 3期和非肾SOFA评分相结合时,预测准确性可提高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41a2/8840946/8a70b81647d8/13613_2022_989_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验