Suppr超能文献

二元表达增强基因网络中信息传递的可靠性。

Binary Expression Enhances Reliability of Messaging in Gene Networks.

作者信息

Gama Leonardo R, Giovanini Guilherme, Balázsi Gábor, Ramos Alexandre F

机构信息

Departamento de Radiologia e Oncologia & Instituto do Câncer do Estado de São Paulo-Faculdade de Medicina, Universidade de São Paulo, São Paulo CEP 05403-911, SP, Brazil.

Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, Av. Arlindo Béttio, 1000, São Paulo CEP 03828-000, SP, Brazil.

出版信息

Entropy (Basel). 2020 Apr 22;22(4):479. doi: 10.3390/e22040479.

Abstract

The promoter state of a gene and its expression levels are modulated by the amounts of transcription factors interacting with its regulatory regions. Hence, one may interpret a gene network as a communicating system in which the state of the promoter of a gene (the ) is communicated by the amounts of transcription factors that it expresses (the ) to modulate the state of the promoter and expression levels of another gene (the ). The reliability of the gene network dynamics can be quantified by Shannon's entropy of the message and the mutual information between the message and the promoter state. Here we consider a stochastic model for a binary gene and use its exact steady state solutions to calculate the entropy and mutual information. We show that a slow switching promoter with long and equally standing ON and OFF states maximizes the mutual information and reduces entropy. That is a binary gene expression regime generating a high variance message governed by a bimodal probability distribution with peaks of the same height. Our results indicate that Shannon's theory can be a powerful framework for understanding how bursty gene expression conciliates with the striking spatio-temporal precision exhibited in pattern formation of developing organisms.

摘要

基因的启动子状态及其表达水平受与其调控区域相互作用的转录因子数量的调节。因此,人们可以将基因网络解释为一个通信系统,其中一个基因启动子的状态( )通过其表达的转录因子数量( )进行传递,以调节另一个基因启动子的状态和表达水平( )。基因网络动力学的可靠性可以通过消息的香农熵以及消息与启动子状态之间的互信息来量化。在这里,我们考虑一个二元基因的随机模型,并使用其精确的稳态解来计算熵和互信息。我们表明,具有长时间且相等的开启和关闭状态的缓慢切换启动子可使互信息最大化并降低熵。这是一种二元基因表达模式,产生由具有相同高度峰值的双峰概率分布控制的高方差消息。我们的结果表明,香农理论可以成为一个强大的框架,用于理解爆发性基因表达如何与发育生物体模式形成中表现出的显著时空精度相协调。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83b0/7516962/375c2749af43/entropy-22-00479-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验