文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Ferrimagnetic Large Single Domain Iron Oxide Nanoparticles for Hyperthermia Applications.

作者信息

Zahn Diana, Landers Joachim, Buchwald Juliana, Diegel Marco, Salamon Soma, Müller Robert, Köhler Moritz, Ecke Gernot, Wende Heiko, Dutz Silvio

机构信息

Institute of Biomedical Engineering and Informatics (BMTI), Technische Universität Ilmenau, D-98693 Ilmenau, Germany.

Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, D-47057 Duisburg, Germany.

出版信息

Nanomaterials (Basel). 2022 Jan 21;12(3):343. doi: 10.3390/nano12030343.


DOI:10.3390/nano12030343
PMID:35159687
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8840257/
Abstract

This paper describes the preparation and obtained magnetic properties of large single domain iron oxide nanoparticles. Such ferrimagnetic particles are particularly interesting for diagnostic and therapeutic applications in medicine or (bio)technology. The particles were prepared by a modified oxidation method of non-magnetic precursors following the green rust synthesis and characterized regarding their structural and magnetic properties. For increasing preparation temperatures (5 to 85 °C), an increasing particle size in the range of 30 to 60 nm is observed. Magnetic measurements confirm a single domain ferrimagnetic behavior with a mean saturation magnetization of ca. 90 Am/kg and a size-dependent coercivity in the range of 6 to 15 kA/m. The samples show a specific absorption rate (SAR) of up to 600 W/g, which is promising for magnetic hyperthermia application. For particle preparation temperatures above 45 °C, a non-magnetic impurity phase occurs besides the magnetic iron oxides that results in a reduced net saturation magnetization.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0abd/8840257/9cc86b895590/nanomaterials-12-00343-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0abd/8840257/b26617a458ec/nanomaterials-12-00343-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0abd/8840257/ed735f64745c/nanomaterials-12-00343-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0abd/8840257/24da3499aff0/nanomaterials-12-00343-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0abd/8840257/490647c50387/nanomaterials-12-00343-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0abd/8840257/47d06288f8df/nanomaterials-12-00343-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0abd/8840257/41f9bcb0824a/nanomaterials-12-00343-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0abd/8840257/5fba27faba4c/nanomaterials-12-00343-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0abd/8840257/9cc86b895590/nanomaterials-12-00343-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0abd/8840257/b26617a458ec/nanomaterials-12-00343-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0abd/8840257/ed735f64745c/nanomaterials-12-00343-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0abd/8840257/24da3499aff0/nanomaterials-12-00343-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0abd/8840257/490647c50387/nanomaterials-12-00343-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0abd/8840257/47d06288f8df/nanomaterials-12-00343-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0abd/8840257/41f9bcb0824a/nanomaterials-12-00343-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0abd/8840257/5fba27faba4c/nanomaterials-12-00343-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0abd/8840257/9cc86b895590/nanomaterials-12-00343-g008.jpg

相似文献

[1]
Ferrimagnetic Large Single Domain Iron Oxide Nanoparticles for Hyperthermia Applications.

Nanomaterials (Basel). 2022-1-21

[2]
Bovine Serum Albumin-Conjugated Ferrimagnetic Iron Oxide Nanoparticles to Enhance the Biocompatibility and Magnetic Hyperthermia Performance.

Nanomicro Lett. 2016

[3]
Coercivity Determines Magnetic Particle Heating.

Adv Healthc Mater. 2018-8-8

[4]
Yttrium iron garnet for hyperthermia applications: Synthesis, characterization and in-vitro analysis.

Mater Sci Eng C Mater Biol Appl. 2020-11

[5]
Synthesis and heating effect of iron/iron oxide composite and iron oxide nanoparticles.

Proc SPIE Int Soc Opt Eng. 2007-2-9

[6]
Structural perspective on revealing heat dissipation behavior of CoFeO-Pd nanohybrids: great promise for magnetic fluid hyperthermia.

Phys Chem Chem Phys. 2020-12-7

[7]
Magnetic Barium Hexaferrite Nanoparticles with Tunable Coercivity as Potential Magnetic Heating Agents.

Nanomaterials (Basel). 2024-6-7

[8]
Modulation of the Magnetic Hyperthermia Response Using Different Superparamagnetic Iron Oxide Nanoparticle Morphologies.

Nanomaterials (Basel). 2021-3-3

[9]
Ferrimagnetic mPEG--PHEP copolymer micelles loaded with iron oxide nanocubes and emodin for enhanced magnetic hyperthermia-chemotherapy.

Natl Sci Rev. 2020-4

[10]
Synthesis, surface modification and characterisation of biocompatible magnetic iron oxide nanoparticles for biomedical applications.

Molecules. 2013-6-27

引用本文的文献

[1]
Magnetic Barium Hexaferrite Nanoparticles with Tunable Coercivity as Potential Magnetic Heating Agents.

Nanomaterials (Basel). 2024-6-7

[2]
Application of nanoparticles in breast cancer treatment: a systematic review.

Naunyn Schmiedebergs Arch Pharmacol. 2024-9

[3]
Optimization of Magnetic Cobalt Ferrite Nanoparticles for Magnetic Heating Applications in Biomedical Technology.

Nanomaterials (Basel). 2023-5-18

[4]
Electrospun Magnetic Nanofiber Mats for Magnetic Hyperthermia in Cancer Treatment Applications-Technology, Mechanism, and Materials.

Polymers (Basel). 2023-4-15

[5]
Metal and Metal Oxides Nanoparticles and Nanosystems in Anticancer and Antiviral Theragnostic Agents.

Pharmaceutics. 2023-4-7

[6]
Albumin Stabilized Fe@C Core-Shell Nanoparticles as Candidates for Magnetic Hyperthermia Therapy.

Nanomaterials (Basel). 2022-8-20

[7]
Facile synthesis of low toxicity iron oxide/TiO nanocomposites with hyperthermic and photo-oxidation properties.

Sci Rep. 2022-4-27

本文引用的文献

[1]
Synthesis and Functionalisation of Superparamagnetic Nano-Rods towards the Treatment of Glioblastoma Brain Tumours.

Nanomaterials (Basel). 2021-8-24

[2]
Modulation of the Magnetic Hyperthermia Response Using Different Superparamagnetic Iron Oxide Nanoparticle Morphologies.

Nanomaterials (Basel). 2021-3-3

[3]
Optimization Study on Specific Loss Power in Superparamagnetic Hyperthermia with Magnetite Nanoparticles for High Efficiency in Alternative Cancer Therapy.

Nanomaterials (Basel). 2020-12-26

[4]
Biocompatible Magnetic Fluids of Co-Doped Iron Oxide Nanoparticles with Tunable Magnetic Properties.

Nanomaterials (Basel). 2020-5-27

[5]
Engineering Core-Shell Structures of Magnetic Ferrite Nanoparticles for High Hyperthermia Performance.

Nanomaterials (Basel). 2020-5-21

[6]
Magnetic Hyperthermia in Y79 Retinoblastoma and ARPE-19 Retinal Epithelial Cells: Tumor Selective Apoptotic Activity of Iron Oxide Nanoparticle.

Transl Vis Sci Technol. 2019-9-27

[7]
Recent advances in magnetic fluid hyperthermia for cancer therapy.

Colloids Surf B Biointerfaces. 2018-10-24

[8]
Correlation between particle size/domain structure and magnetic properties of highly crystalline FeO nanoparticles.

Sci Rep. 2017-8-30

[9]
Size-Dependent Heating of Magnetic Iron Oxide Nanoparticles.

ACS Nano. 2017-6-21

[10]
Magnetic multi-granule nanoclusters: A model system that exhibits universal size effect of magnetic coercivity.

Sci Rep. 2015-7-17

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索