文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Albumin Stabilized Fe@C Core-Shell Nanoparticles as Candidates for Magnetic Hyperthermia Therapy.

作者信息

Ramírez-Morales Maria Antonieta, Goldt Anastasia E, Kalachikova Polina M, Ramirez B Javier A, Suzuki Masashi, Zhigach Alexey N, Ben Salah Asma, Shurygina Liliya I, Shandakov Sergey D, Zatsepin Timofei, Krasnikov Dmitry V, Maekawa Toru, Nikolaev Evgeny N, Nasibulin Albert G

机构信息

Skolkovo Institute of Science and Technology, 3 Nobel Street, 121205 Moscow, Russia.

Hi-QNano s.r.l., Via Barsanti No. 1, 73010 Arnesano, Italy.

出版信息

Nanomaterials (Basel). 2022 Aug 20;12(16):2869. doi: 10.3390/nano12162869.


DOI:10.3390/nano12162869
PMID:36014734
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9414223/
Abstract

Carbon-encapsulated iron nanoparticles (Fe@C) with a mean diameter of 15 nm have been synthesized using evaporation-condensation flow-levitation method by the direct iron-carbon gas-phase reaction at high temperatures. Further, Fe@C were stabilized with bovine serum albumin (BSA) coating, and their electromagnetic properties were evaluated to test their performance in magnetic hyperthermia therapy (MHT) through a specific absorption rate (SAR). Heat generation was observed at different Fe@C concentrations (1, 2.5, and 5 mg/mL) when applied 331 kHz and 60 kA/m of an alternating magnetic field, resulting in SAR values of 437.64, 129.36, and 50.4 W/g for each concentration, respectively. Having such high SAR values at low concentrations, obtained material is ideal for use in MHT.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d282/9414223/81af8a5000b3/nanomaterials-12-02869-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d282/9414223/6ffba7c5b38c/nanomaterials-12-02869-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d282/9414223/36cf9b85ea40/nanomaterials-12-02869-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d282/9414223/81af8a5000b3/nanomaterials-12-02869-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d282/9414223/6ffba7c5b38c/nanomaterials-12-02869-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d282/9414223/36cf9b85ea40/nanomaterials-12-02869-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d282/9414223/81af8a5000b3/nanomaterials-12-02869-g003.jpg

相似文献

[1]
Albumin Stabilized Fe@C Core-Shell Nanoparticles as Candidates for Magnetic Hyperthermia Therapy.

Nanomaterials (Basel). 2022-8-20

[2]
Hyperthermia of Magnetically Soft-Soft Core-Shell Ferrite Nanoparticles.

Int J Mol Sci. 2022-11-26

[3]
Synthesis and heating effect of iron/iron oxide composite and iron oxide nanoparticles.

Proc SPIE Int Soc Opt Eng. 2007-2-9

[4]
Bovine Serum Albumin-Conjugated Ferrimagnetic Iron Oxide Nanoparticles to Enhance the Biocompatibility and Magnetic Hyperthermia Performance.

Nanomicro Lett. 2016

[5]
In Vitro Evaluation of Hyperthermia Magnetic Technique Indicating the Best Strategy for Internalization of Magnetic Nanoparticles Applied in Glioblastoma Tumor Cells.

Pharmaceutics. 2021-8-7

[6]
Impact of magnetic field parameters and iron oxide nanoparticle properties on heat generation for use in magnetic hyperthermia.

J Magn Magn Mater. 2015-8-1

[7]
Tailoring Interfacial Exchange Anisotropy in Hard-Soft Core-Shell Ferrite Nanoparticles for Magnetic Hyperthermia Applications.

Nanomaterials (Basel). 2022-1-14

[8]
Earthicle: The Design of a Conceptually New Type of Particle.

ACS Appl Mater Interfaces. 2017-1-5

[9]
Using kinetic Monte Carlo simulations to design efficient magnetic nanoparticles for clinical hyperthermia.

Med Phys. 2022-1

[10]
Preparation of carboplatin-Fe@C-loaded chitosan nanoparticles and study on hyperthermia combined with pharmacotherapy for liver cancer.

Int J Hyperthermia. 2009-8

引用本文的文献

[1]
Characteristics and Antitumor Activity of Doxorubicin-Loaded Multifunctional Iron Oxide Nanoparticles in MEC1 and RM1 Cell Lines.

J Funct Biomater. 2024-12-3

[2]
Dual-color core-shell silica nanosystems for advanced super-resolution biomedical imaging.

Nanoscale Adv. 2023-8-25

本文引用的文献

[1]
APTES-Modified SBA-15 as a Non-Toxic Carrier for Phenylbutazone.

Materials (Basel). 2022-1-26

[2]
Ferrimagnetic Large Single Domain Iron Oxide Nanoparticles for Hyperthermia Applications.

Nanomaterials (Basel). 2022-1-21

[3]
Immobilization of protein on FeO nanoparticles for magnetic hyperthermia application.

Int J Biol Macromol. 2021-1-1

[4]
Yttrium-Doped Iron Oxide Nanoparticles for Magnetic Hyperthermia Applications.

J Phys Chem C Nanomater Interfaces. 2020-3-26

[5]
Interactions at the cell membrane and pathways of internalization of nano-sized materials for nanomedicine.

Beilstein J Nanotechnol. 2020-2-14

[6]
Functionalized Magnetic Nanoparticles as Catalysts for Enantioselective Henry Reaction.

ACS Omega. 2019-12-9

[7]
Role of zinc substitution in magnetic hyperthermia properties of magnetite nanoparticles: interplay between intrinsic properties and dipolar interactions.

Sci Rep. 2019-12-2

[8]
Therapeutic evaluation of magnetic hyperthermia using Fe3O4-aminosilane-coated iron oxide nanoparticles in glioblastoma animal model.

Einstein (Sao Paulo). 2019-8-1

[9]
Evaluation of magnetic nanoparticles for magnetic fluid hyperthermia.

Int J Hyperthermia. 2019

[10]
HSA-Coated Magnetic Nanoparticles for MRI-Guided Photodynamic Cancer Therapy.

Pharmaceutics. 2018-12-17

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索