文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

具有可调磁性能的共掺杂氧化铁纳米颗粒的生物相容性磁流体。

Biocompatible Magnetic Fluids of Co-Doped Iron Oxide Nanoparticles with Tunable Magnetic Properties.

作者信息

Dutz Silvio, Buske Norbert, Landers Joachim, Gräfe Christine, Wende Heiko, Clement Joachim H

机构信息

Institute of Biomedical Engineering and Informatics (BMTI), Technische Universität Ilmenau, D-98693 Ilmenau, Germany.

Department of Nano Biophotonics, Leibniz Institute of Photonic Technology (IPHT), D-07745 Jena, Germany.

出版信息

Nanomaterials (Basel). 2020 May 27;10(6):1019. doi: 10.3390/nano10061019.


DOI:10.3390/nano10061019
PMID:32471031
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7352500/
Abstract

Magnetite (FeO) particles with a diameter around 10 nm have a very low coercivity (H) and relative remnant magnetization (M/M), which is unfavorable for magnetic fluid hyperthermia. In contrast, cobalt ferrite (CoFeO) particles of the same size have a very high H and M/M, which is magnetically too hard to obtain suitable specific heating power (SHP) in hyperthermia. For the optimization of the magnetic properties, the Fe ions of magnetite were substituted by Co step by step, which results in a Co doped iron oxide inverse spinel with an adjustable Fe substitution degree in the full range of pure iron oxide up to pure cobalt ferrite. The obtained magnetic nanoparticles were characterized regarding their structural and magnetic properties as well as their cell toxicity. The pure iron oxide particles showed an average size of 8 nm, which increased up to 12 nm for the cobalt ferrite. For ferrofluids containing the prepared particles, only a limited dependence of H and M/M on the Co content in the particles was found, which confirms a stable dispersion of the particles within the ferrofluid. For dry particles, a strong correlation between the Co content and the resulting H and M/M was detected. For small substitution degrees, only a slight increase in H was found for the increasing Co content, whereas for a substitution of more than 10% of the Fe atoms by Co, a strong linear increase in H and M/M was obtained. Mössbauer spectroscopy revealed predominantly Fe in all samples, while also verifying an ordered magnetic structure with a low to moderate surface spin canting. Relative spectral areas of Mössbauer subspectra indicated a mainly random distribution of Co ions rather than the more pronounced octahedral site-preference of bulk CoFeO. Cell vitality studies confirmed no increased toxicity of the Co-doped iron oxide nanoparticles compared to the pure iron oxide ones. Magnetic heating performance was confirmed to be a function of coercivity as well. The here presented non-toxic magnetic nanoparticle system enables the tuning of the magnetic properties of the particles without a remarkable change in particles size. The found heating performance is suitable for magnetic hyperthermia application.

摘要

直径约10纳米的磁铁矿(FeO)颗粒具有非常低的矫顽力(H)和相对剩余磁化强度(M/M),这对于磁流体热疗是不利的。相比之下,相同尺寸的钴铁氧体(CoFeO)颗粒具有非常高的H和M/M,其磁性太强以至于在热疗中难以获得合适的比热功率(SHP)。为了优化磁性能,磁铁矿中的铁离子被钴逐步取代,这导致了一种钴掺杂的氧化铁反尖晶石,其铁取代度在从纯氧化铁到纯钴铁氧体的整个范围内均可调节。对所获得的磁性纳米颗粒的结构和磁性能以及细胞毒性进行了表征。纯氧化铁颗粒的平均尺寸为8纳米,而钴铁氧体的平均尺寸增加到了12纳米。对于含有制备颗粒的铁磁流体,仅发现H和M/M对颗粒中钴含量的依赖性有限,这证实了颗粒在铁磁流体中的稳定分散。对于干燥颗粒,检测到钴含量与所得的H和M/M之间存在很强的相关性。对于较小的取代度,随着钴含量的增加,仅发现H略有增加,而当超过10%的铁原子被钴取代时,H和M/M获得了强烈的线性增加。穆斯堡尔光谱显示所有样品中主要为铁,同时也证实了具有低至中等表面自旋倾斜的有序磁结构。穆斯堡尔子谱的相对谱面积表明钴离子主要呈随机分布,而不是块状CoFeO中更明显的八面体位置偏好。细胞活力研究证实,与纯氧化铁纳米颗粒相比,钴掺杂的氧化铁纳米颗粒的毒性没有增加。磁加热性能也被证实是矫顽力的函数。这里展示的无毒磁性纳米颗粒系统能够在不显著改变颗粒尺寸的情况下调节颗粒的磁性能。所发现的加热性能适用于磁热疗应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e173/7352500/3cc630b471d4/nanomaterials-10-01019-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e173/7352500/18e1cc587e4c/nanomaterials-10-01019-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e173/7352500/fb28503131b1/nanomaterials-10-01019-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e173/7352500/a6af5da32671/nanomaterials-10-01019-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e173/7352500/95376d79ce41/nanomaterials-10-01019-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e173/7352500/05a28d9ee6f2/nanomaterials-10-01019-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e173/7352500/7c3dd0617bf4/nanomaterials-10-01019-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e173/7352500/2e82fc6339c1/nanomaterials-10-01019-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e173/7352500/3fc9ee2463d1/nanomaterials-10-01019-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e173/7352500/7230d1b3073a/nanomaterials-10-01019-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e173/7352500/c907fc9e67de/nanomaterials-10-01019-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e173/7352500/3cc630b471d4/nanomaterials-10-01019-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e173/7352500/18e1cc587e4c/nanomaterials-10-01019-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e173/7352500/fb28503131b1/nanomaterials-10-01019-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e173/7352500/a6af5da32671/nanomaterials-10-01019-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e173/7352500/95376d79ce41/nanomaterials-10-01019-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e173/7352500/05a28d9ee6f2/nanomaterials-10-01019-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e173/7352500/7c3dd0617bf4/nanomaterials-10-01019-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e173/7352500/2e82fc6339c1/nanomaterials-10-01019-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e173/7352500/3fc9ee2463d1/nanomaterials-10-01019-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e173/7352500/7230d1b3073a/nanomaterials-10-01019-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e173/7352500/c907fc9e67de/nanomaterials-10-01019-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e173/7352500/3cc630b471d4/nanomaterials-10-01019-g011.jpg

相似文献

[1]
Biocompatible Magnetic Fluids of Co-Doped Iron Oxide Nanoparticles with Tunable Magnetic Properties.

Nanomaterials (Basel). 2020-5-27

[2]
Controlled cobalt doping in biogenic magnetite nanoparticles.

J R Soc Interface. 2013-4-17

[3]
Specific Absorption Rate Dependency on the Co Distribution and Magnetic Properties in CoMnFeO Nanoparticles.

Nanomaterials (Basel). 2021-5-7

[4]
Tunable magnetothermal properties of cobalt-doped magnetite-carboxymethylcellulose ferrofluids: smart nanoplatforms for potential magnetic hyperthermia applications in cancer therapy.

Nanoscale Adv. 2021-1-4

[5]
Synthesis and Characterization of Zinc and Vanadium Co-Substituted CoFeO Nanoparticles Synthesized by Using the Sol-Gel Auto-Combustion Method.

Nanomaterials (Basel). 2022-2-23

[6]
Optimization of Magnetic Cobalt Ferrite Nanoparticles for Magnetic Heating Applications in Biomedical Technology.

Nanomaterials (Basel). 2023-5-18

[7]
Cubic Anisotropic Co- and Zn-Substituted Ferrite Nanoparticles as Multimodal Magnetic Agents.

ACS Appl Mater Interfaces. 2020-2-11

[8]
Magnetic Barium Hexaferrite Nanoparticles with Tunable Coercivity as Potential Magnetic Heating Agents.

Nanomaterials (Basel). 2024-6-7

[9]
Sonochemical synthesis of Gd doped CoFeO spinel ferrite nanoparticles and its physical properties.

Ultrason Sonochem. 2018-1

[10]
Application of biocompatible and ultrastable superparamagnetic iron(III) oxide nanoparticles doped with magnesium for efficient magnetic fluid hyperthermia in lung cancer cells.

J Mater Chem B. 2023-5-10

引用本文的文献

[1]
HMGB1 derived from lung epithelial cells after cobalt nanoparticle exposure promotes the activation of lung fibroblasts.

Nanotoxicology. 2024-9

[2]
Synthesis, Surface Modification and Magnetic Properties Analysis of Heat-Generating Cobalt-Substituted Magnetite Nanoparticles.

Nanomaterials (Basel). 2024-4-30

[3]
Polyrhodanine-based nanomaterials for biomedical applications: A review.

Heliyon. 2024-4-8

[4]
High-Dose Exposure to Polymer-Coated Iron Oxide Nanoparticles Elicits Autophagy-Dependent Ferroptosis in Susceptible Cancer Cells.

Nanomaterials (Basel). 2023-5-24

[5]
Optimization of Magnetic Cobalt Ferrite Nanoparticles for Magnetic Heating Applications in Biomedical Technology.

Nanomaterials (Basel). 2023-5-18

[6]
Effect of Europium Substitution on the Structural, Magnetic and Relaxivity Properties of Mn-Zn Ferrite Nanoparticles: A Dual-Mode MRI Contrast-Agent Candidate.

Nanomaterials (Basel). 2023-1-12

[7]
An Advanced Thermal Decomposition Method to Produce Magnetic Nanoparticles with Ultrahigh Heating Efficiency for Systemic Magnetic Hyperthermia.

Small Methods. 2022-12

[8]
Structural, magnetic and hyperthermia properties and their correlation in cobalt-doped magnetite nanoparticles.

RSC Adv. 2021-12-24

[9]
Ferrimagnetic Large Single Domain Iron Oxide Nanoparticles for Hyperthermia Applications.

Nanomaterials (Basel). 2022-1-21

[10]
Inorganic Materials and Metal-Organic Frameworks: Editorial Announcement.

Nanomaterials (Basel). 2021-12-3

本文引用的文献

[1]
Size and Chemistry Controlled Cobalt-Ferrite Nanoparticles and Their Anti-proliferative Effect against the MCF-7 Breast Cancer Cells.

ACS Biomater Sci Eng. 2016-12-12

[2]
Biophysical Characterization of (Silica-coated) Cobalt Ferrite Nanoparticles for Hyperthermia Treatment.

Nanomaterials (Basel). 2019-12-1

[3]
evaluation of magnetite nanoparticles in human mesenchymal stem cells: comparison of different cytotoxicity assays.

Toxicol Mech Methods. 2019-8-19

[4]
Iron oxide nanoparticles: Diagnostic, therapeutic and theranostic applications.

Adv Drug Deliv Rev. 2019-1-11

[5]
Comparison of different cytotoxicity assays for in vitro evaluation of mesoporous silica nanoparticles.

Toxicol In Vitro. 2018-6-22

[6]
Novel magnetic multicore nanoparticles designed for MPI and other biomedical applications: From synthesis to first in vivo studies.

PLoS One. 2018-1-4

[7]
Advances in Magnetic Nanoparticles for Biomedical Applications.

Adv Healthc Mater. 2018-3

[8]
Pitfalls and Challenges in Nanotoxicology: A Case of Cobalt Ferrite (CoFeO) Nanocomposites.

Chem Res Toxicol. 2017-2-20

[9]
Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications.

Sci Technol Adv Mater. 2015-4-28

[10]
Magnetic nanoparticles adapted for specific biomedical applications.

Biomed Tech (Berl). 2015-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索