Shaban Mohamed, Almohammedi Abdullah, Saad Rana, El Sayed Adel M
Department of Physics, Faculty of Science, Islamic University in Madinah, Al-Madinah Al-Munawarah 42351, Saudi Arabia.
Nanophotonics and Applications (NPA) Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt.
Nanomaterials (Basel). 2022 Jan 28;12(3):453. doi: 10.3390/nano12030453.
Currently, hydrogen generation via photocatalytic water splitting using semiconductors is regarded as a simple environmental solution to energy challenges. This paper discusses the effects of the doping of noble metals, Ir (3.0 at.%) and Ni (1.5-4.5 at.%), on the structure, morphology, optical properties, and photoelectrochemical performance of sol-gel-produced SnO thin films. The incorporation of Ir and Ni influences the position of the peaks and the lattice characteristics of the tetragonal polycrystalline SnO films. The films have a homogeneous, compact, and crack-free nanoparticulate morphology. As the doping level is increased, the grain size shrinks, and the films have a high proclivity for forming Sn-OH bonds. The optical bandgap of the un-doped film is 3.5 eV, which fluctuates depending on the doping elements and their ratios to 2.7 eV for the 3.0% Ni-doped SnO:Ir Photoelectrochemical (PEC) electrode. This electrode produces the highest photocurrent density ( = 46.38 mA/cm) and PEC hydrogen production rate (52.22 mmol hcm at -1V), with an Incident-Photon-to-Current Efficiency (IPCE% )of 17.43% at 307 nm. The applied bias photon-to-current efficiency (ABPE) of this electrode is 1.038% at -0.839 V, with an offset of 0.391% at 0 V and 307 nm. These are the highest reported values for SnO-based PEC catalysts. The electrolyte type influences the values of photoelectrodes in the order (HCl) > (NaOH) > (NaSO). After 12 runs of reusability at -1 V, the optimized photoelectrode shows high stability and retains about 94.95% of its initial PEC performance, with a corrosion rate of 5.46 nm/year. This research provides a novel doping technique for the development of a highly active SnO-based photoelectrocatalyst for solar light-driven hydrogen fuel generation.
目前,利用半导体通过光催化水分解制氢被视为应对能源挑战的一种简单的环保解决方案。本文讨论了贵金属铱(3.0原子%)和镍(1.5 - 4.5原子%)掺杂对溶胶 - 凝胶法制备的二氧化锡(SnO)薄膜的结构、形态、光学性质和光电化学性能的影响。铱和镍的掺入影响了四方多晶SnO薄膜的峰位和晶格特征。这些薄膜具有均匀、致密且无裂纹的纳米颗粒形态。随着掺杂水平的提高,晶粒尺寸缩小,并且薄膜形成Sn - OH键的倾向增大。未掺杂薄膜的光学带隙为3.5电子伏特,其会根据掺杂元素及其比例而波动,对于3.0%镍掺杂的SnO:Ir光电化学(PEC)电极,带隙变为2.7电子伏特。该电极产生最高的光电流密度( = 46.38 mA/cm)和PEC产氢速率(在 - 1V时为52.22 mmol hcm),在307纳米处的入射光子到电流效率(IPCE%)为17.43%。该电极在 - 0.839V时的外加偏压光子到电流效率(ABPE)为1.038%,在0V和307纳米处的偏移为0.391%。这些是基于SnO的PEC催化剂所报道的最高值。电解质类型对光电极值的影响顺序为(HCl)>(NaOH)>(NaSO)。在 - 1V下进行12次可重复使用性测试后,优化后的光电极显示出高稳定性,并保留了其初始PEC性能的约94.95%,腐蚀速率为5.46纳米/年。本研究为开发用于太阳能驱动制氢燃料的高活性SnO基光电催化剂提供了一种新颖的掺杂技术。